An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

Overview

About

This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model based agent that predicts future frames and uses them to guide decision making.

Instructions

First, you'll need the latest version of Pytorch. If you wish to view Tensorboard logs, you'll also need to grab a copy of that (it also comes with tensorflow). Then, you'll need to install the autonomous-learning-library along with the Atari environments:

pip install autonomous-learning-library[atari]

Unfortunately, the current IP holders for the Atari library made it more difficult to acquire a license and use the ROMs than it used to be. If you have a license to use the ROMs, you can try AutoROM.

Usage

You can run the agent as well as a baseline DQN agent using:

python main.py Pong

You can track progress using:

tensorboard --logdir runs

Once the script has finished (could take a long time, especially if you do not have a fast GPU!), you can see the final results using:

python plot.py

Results

For us, the above instructions produced the following results:

results

As you can see, this agent isn't very good! On the other hand, the purpose of this agent was not performance, but to demonstrate the utility of the autonomous-learning-library in developing new agents not included in the original library. Maybe you can come up with ways of improving this agent!

Owner
Chris Nota
PhD student studying reinforcement learning at UMass Amherst.
Chris Nota
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette ๐ŸŽถ Imagenette, gentille imagenette, Imagenette, je te plumerai. ๐ŸŽถ (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Bรถther 19 Nov 22, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
[Machine Learning Engineer Basic Guide] ๋ถ€์ŠคํŠธ์บ ํ”„ AI Tech - Product Serving ์ž๋ฃŒ

Boostcamp-AI-Tech-Product-Serving ๋ถ€์ŠคํŠธ์บ ํ”„ AI Tech - Product Serving ์ž๋ฃŒ Repository ๊ตฌ์กฐ part1(MLOps ๊ฐœ๋ก , Model Serving, ๋จธ์‹ ๋Ÿฌ๋‹ ํ”„๋กœ์ ํŠธ ๋ผ์ดํ”„ ์‚ฌ์ดํด์€ ๋ณ„๋„์˜ ์ฝ”๋“œ๊ฐ€ ์—†์œผ๋ฉฐ, part

Sung Yun Byeon 269 Dec 21, 2022