The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Overview

Interscript

The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts.

overview


Dataset

  • data.json contains the data in an easy to read JSON format. data.jsonl contains the data in a JSONL format. The file contains 8466 samples, one sample per line. Every sample is a JSON object with the following fields:
 {
        "input_script": "push chair in -> pull chair in; pull chair in -> push chair against wall; push chair against wall -> straighten chair legs; straighten chair legs -> Push all chairs in; line up the chairs -> push chair in",
        "input_feedback": "One would not pull chair in if they had initially pushed it in.",
        "output_script": "push chair against wall -> straighten chair legs;straighten chair legs -> Push all chairs in;line up the chairs -> push chair in;push chair in -> push chair against wall",
        "metadata": {
            "id": "301KG0KX9BKTC0HB7Z9SV1Y5HAFH2Y.2_implicit.gp",
            "goal": "push all chairs in",
            "is_distractor": false,
            "feedback_type": "implicit.gp",
            "edit": "Remove node 'pull chair in'",
            "input_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. pull chair in",
                "4. push chair against wall",
                "5. straighten chair legs",
                "6. Push all chairs in"
            ],
            "output_script_formatted": [
                "1. line up the chairs",
                "2. push chair in",
                "3. push chair against wall",
                "4. straighten chair legs",
                "5. Push all chairs in"
            ]
        }
    }

The description of the fields is as follows:

  1. input_script: Model generated script $y_{bad}$.
  2. input_feedback: User feedback on the input script $f$.
  3. output_script: Fixed output script $y_{good}$.

Metadata contains additional information about the sample. Some important fields are:

  1. id: Unique identifier of the sample.
  2. goal: Goal of the script.
  3. is_distractor: Whether the feedback is a distractor (please see Section 4 for more details).
  4. feedback_type: Type of feedback (please see Section 4 "Annotation" for more details).
  5. edit: The input_feedback presented as an edit operation on the input script, that is, the edit operation that transforms the input script into the output script.
  6. input_script_formatted: The input script presented as a list of sentences.
  7. output_script_formatted: The output script presented as a list of sentences.

Data collection process

  • We use Amazon Mechanical Turk to collect feedback on erroneous scripts from users.
  • An overview of the process is captured in the following figure:

datacollection

Amazon Mechanical Turk Template

ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022