The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Overview

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction

This repo contains the data sets and source code of our paper:

Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions [ACL 2021].

  • We introduce a new ABSA task, named Aspect-Category-Opinion-Sentiment Quadruple (ACOS) Extraction, to extract fine-grained ABSA Quadruples from product reviews;
  • We construct two new datasets for the task, with ACOS quadruple annotations, and benchmark the task with four baseline systems;
  • Our task and datasets provide a good support for discovering implicit opinion targets and implicit opinion expressions in product reviews.

Task

The Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction aims to extract all aspect-category-opinion-sentiment quadruples in a review sentence and provide full support for aspect-based sentiment analysis with implicit aspects and opinions.

Datasets

Two new datasets, Restaurant-ACOS and Laptop-ACOS, are constructed for the ACOS Quadruple Extraction task:

  • Restaurant-ACOS is an extension of the existing SemEval Restaurant dataset, based on which we add the annotation of implicit aspects, implicit opinions, and the quadruples;
  • Laptop-ACOS is a brand new one collected from the Amazon Laptop domain. It has twice size of the SemEval Loptop dataset, and is annotated with quadruples containing all explicit/implicit aspects and opinions.

The following table shows the comparison between our two ACOS Quadruple datasets and existing representative ABSA datasets.

Methods

We benchmark the ACOS Quadruple Extraction task with four baseline systems:

  • Double-Propagation-ACOS
  • JET-ACOS
  • TAS-BERT-ACOS
  • Extract-Classify-ACOS

We provided the source code of Extract-Classify-ACOS. The source code of the other three methods will be provided soon.

Overview of our Extract-Classify-ACOS method. The first step performs aspect-opinion co-extraction, and the second step predicts category-sentiment given the aspect-opinion pairs.

Results

The ACOS quadruple extraction performance of four different systems on the two datasets:

We further investigate the ability of different systems in addressing the implicit aspects/opinion problem:

Citation

If you use the data and code in your research, please cite our paper as follows:

@inproceedings{cai2021aspect,
  title={Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions},
  author={Cai, Hongjie and Xia, Rui and Yu, Jianfei},
  booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
  pages={340--350},
  year={2021}
}
Owner
NUSTM
Text Mining Group, Nanjing University of Science & Technology
NUSTM
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
ANN model for prediction a spatio-temporal distribution of supercooled liquid in mixed-phase clouds using Doppler cloud radar spectra.

VOODOO Revealing supercooled liquid beyond lidar attenuation Explore the docs » Report Bug · Request Feature Table of Contents About The Project Built

remsens-lim 2 Apr 28, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

25 Dec 08, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021