Python Single Object Tracking Evaluation

Overview

pysot-toolkit

The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including

Install

git clone https://github.com/StrangerZhang/pysot-toolkit
pip install -r requirements.txt
cd pysot/utils/
python setup.py build_ext --inplace
# if you need to draw graph, you need latex installed on your system

Download Dataset

Download json files used in our toolkit baidu pan or Google Drive

  1. Put CVRP13.json, OTB100.json, OTB50.json in OTB100 dataset directory (you need to copy Jogging to Jogging-1 and Jogging-2, and copy Skating2 to Skating2-1 and Skating2-2 or using softlink)

    The directory should have the below format

    | -- OTB100/

    ​ | -- Basketball

    ​ | ......

    ​ | -- Woman

    ​ | -- OTB100.json

    ​ | -- OTB50.json

    ​ | -- CVPR13.json

  2. Put all other jsons in the dataset directory like in step 1

Usage

1. Evaluation on VOT2018(VOT2016)

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset VOT2018 \				# dataset name(VOT2018, VOT2016)
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers ECO UPDT SiamRPNpp 			# tracker names 

# you will see
------------------------------------------------------------
|Tracker Name| Accuracy | Robustness | Lost Number |  EAO  |
------------------------------------------------------------
| SiamRPNpp  |  0.600   |   0.234    |    50.0     | 0.415 |
|    UPDT    |  0.536   |   0.184    |    39.2     | 0.378 |
|    ECO     |  0.484   |   0.276    |    59.0     | 0.280 |
------------------------------------------------------------

2. Evaluation on OTB100(UAV123, NFS, LaSOT)

converted *.txt tracking results will be released soon

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset OTB100 \				# dataset name(OTB100, UAV123, NFS, LaSOT)
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers SiamRPN++ C-COT DaSiamRPN ECO  \	# tracker names 
	--num 4 \				  	# evaluation thread
	--show_video_level \ 	  			# wether to show video results
	--vis 					  	# draw graph

# you will see (Normalized Precision not used in OTB evaluation)
-----------------------------------------------------
|Tracker name| Success | Norm Precision | Precision |
-----------------------------------------------------
| SiamRPN++  |  0.696  |     0.000      |   0.914   |
|    ECO     |  0.691  |     0.000      |   0.910   |
|   C-COT    |  0.671  |     0.000      |   0.898   |
| DaSiamRPN  |  0.658  |     0.000      |   0.880   |
-----------------------------------------------------

-----------------------------------------------------------------------------------------
|    Tracker name     |      SiamRPN++      |      DaSiamRPN      |         ECO         |
-----------------------------------------------------------------------------------------
|     Video name      | success | precision | success | precision | success | precision |
-----------------------------------------------------------------------------------------
|     Basketball      |  0.423  |   0.555   |  0.677  |   0.865   |  0.653  |   0.800   |
|        Biker        |  0.728  |   0.932   |  0.319  |   0.448   |  0.506  |   0.832   |
|        Bird1        |  0.207  |   0.360   |  0.274  |   0.508   |  0.192  |   0.302   |
|        Bird2        |  0.629  |   0.742   |  0.604  |   0.697   |  0.775  |   0.882   |
|      BlurBody       |  0.823  |   0.879   |  0.759  |   0.767   |  0.713  |   0.894   |
|      BlurCar1       |  0.803  |   0.917   |  0.837  |   0.895   |  0.851  |   0.934   |
|      BlurCar2       |  0.864  |   0.926   |  0.794  |   0.872   |  0.883  |   0.931   |
......
|        Vase         |  0.564  |   0.698   |  0.554  |   0.742   |  0.544  |   0.752   |
|       Walking       |  0.761  |   0.956   |  0.745  |   0.932   |  0.709  |   0.955   |
|      Walking2       |  0.362  |   0.476   |  0.263  |   0.371   |  0.793  |   0.941   |
|        Woman        |  0.615  |   0.908   |  0.648  |   0.887   |  0.771  |   0.936   |
-----------------------------------------------------------------------------------------
OTB100 Success Plot OTB100 Precision Plot

3. Evaluation on VOT2018-LT

cd /path/to/pysot-toolkit
python bin/eval.py \
	--dataset_dir /path/to/dataset/root \		# dataset path
	--dataset VOT2018-LT \				# dataset name
	--tracker_result_dir /path/to/tracker/dir \	# tracker dir
	--trackers SiamRPN++ MBMD DaSiam-LT \		# tracker names 
	--num 4 \				  	# evaluation thread
	--vis \					  	# wether to draw graph

# you will see
-------------------------------------------
|Tracker Name| Precision | Recall |  F1   |
-------------------------------------------
| SiamRPN++  |   0.649   | 0.610  | 0.629 |
|    MBMD    |   0.634   | 0.588  | 0.610 |
| DaSiam-LT  |   0.627   | 0.588  | 0.607 |
|    MMLT    |   0.574   | 0.521  | 0.546 |
|  FuCoLoT   |   0.538   | 0.432  | 0.479 |
|  SiamVGG   |   0.552   | 0.393  | 0.459 |
|   SiamFC   |   0.600   | 0.334  | 0.429 |
-------------------------------------------

Get Tracking Results of Your Own Tracker

Add pysot-toolkit to your PYTHONPATH

export PYTHONPATH=/path/to/pysot-toolkit:$PYTHONPATH

1. OPE (One Pass Evaluation)

from pysot.datasets import DatasetFactory

dataset = DatasetFactory.create_dataset(name=dataset_name,
                                       	dataset_root=datset_root,
                                        load_img=False)
for video in dataset:
    for idx, (img, gt_bbox) in enumerate(video):
        if idx == 0:
            # init your tracker here
        else:
            # get tracking result here

2. Restarted Evaluation

from pysot.datasets import DatasetFactory
from pysot.utils.region import vot_overlap

dataset = DatasetFactory.create_dataset(name=dataset_name,
                                       	dataset_root=datset_root,
                                        load_img=False)
frame_counter = 0
pred_bboxes = []
for video in dataset:
    for idx, (img, gt_bbox) in enumerate(video):
        if idx == frame_counter:
            # init your tracker here
            pred_bbox.append(1)
        elif idx > frame_counter:
            # get tracking result here
            pred_bbox = 
            overlap = vot_overlap(pred_bbox, gt_bbox, (img.shape[1], img.shape[0]))
            if overlap > 0: 
	    	# continue tracking
                pred_bboxes.append(pred_bbox)
            else: 
	    	# lost target, restart
                pred_bboxes.append(2)
                frame_counter = idx + 5
        else:
            pred_bboxes.append(0)
Owner
Computational Advertising & Recommendation
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022