Lipschitz-constrained Unsupervised Skill Discovery

Related tags

Deep LearningLSD
Overview

Lipschitz-constrained Unsupervised Skill Discovery

This repository is the official implementation of

The implementation is based on Unsupervised Skill Discovery with Bottleneck Option Learning and garage.

Visit our project page for more results including videos.

Requirements

Examples

Install requirements:

pip install -r requirements.txt
pip install -e .
pip install -e garaged

Ant with 2-D continuous skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 2 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Ant with 16 discrete skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 16 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.003 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Humanoid with 2-D continuous skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 2 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

Humanoid with 16 discrete skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 16 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

HalfCheetah with 8 discrete skills:

python tests/main.py --run_group EXP --env half_cheetah --max_path_length 200 --dim_option 8 --common_lr 0.0001 --seed 0 --normalizer_type half_cheetah_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4
Owner
Seohong Park
Seohong Park
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022