Lipschitz-constrained Unsupervised Skill Discovery

Related tags

Deep LearningLSD
Overview

Lipschitz-constrained Unsupervised Skill Discovery

This repository is the official implementation of

The implementation is based on Unsupervised Skill Discovery with Bottleneck Option Learning and garage.

Visit our project page for more results including videos.

Requirements

Examples

Install requirements:

pip install -r requirements.txt
pip install -e .
pip install -e garaged

Ant with 2-D continuous skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 2 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Ant with 16 discrete skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 16 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.003 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Humanoid with 2-D continuous skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 2 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

Humanoid with 16 discrete skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 16 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

HalfCheetah with 8 discrete skills:

python tests/main.py --run_group EXP --env half_cheetah --max_path_length 200 --dim_option 8 --common_lr 0.0001 --seed 0 --normalizer_type half_cheetah_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4
Owner
Seohong Park
Seohong Park
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter ยท Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022