An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

Overview

WordleSolver

An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

How to use the program


Copy this project with git clone and run python3 solver.py in the terminal.

When you run the program, the algorithm will provide you with an educated guess. Then, you type the guess into Wordle. Once you get the result of how many letters were right, you input it back into the program and will get another guess back. This process will continue until you have solved the puzzle!

Inputting the result of your guesses is easy. If a character is gray, enter '_', if a character is yellow, enter the lowercase letter, and if a character is green, enter the uppercase letter. For example, if the program told you to guess "aeros" and the result of the guess was:

image

You would enter the result as: __r__

Here is another example:

image

You would enter the result as: DR_k_

How the algorithm works

Here's a quick run-down of how the algorithm works. We keep a list of words that the answer can be and keep removing from the list until only one word remains or we guess the right answer. Each word has a unique number associated with it. We can use this number to quickly determine if a word can be an answer based on the results of other guesses. If a word cannot be the answer, it will be removed from our list. The key to the accuracy and efficiency of this algorithm is how this unique number is generated.

The number is the product of a few prime numbers which lets us use modular arithmetic in a clever way! Each letter will have 6 prime numbers associated with it. One "yellow" number and five "green" numbers. We use the one yellow number when we know a letter is in the word but we don't know where. We use one of the green letters when we know that a letter is in a specific spot. You can see these prime numbers in charDict.json. To actually calculate the number of a word, we multiply all the yellow numbers of the characters that make up the word together as well as certain green numbers. The green number we multiply depends on the position the letter appears. If the letter D appears in the first spot, we multiply by its 1st green number. If it was instead in the last spot of the word, we multiply by its 5th green number. The reason we do this is we can utilize modulo to check if a certain word can be an answer based on the result of another guess. For example, if we guessed "aeros" and the word we were trying to find was "drink", we will find that r is somewhere in the word but not in the third spot. Let us say a word has number n. If n%r's yellow number does not equal 0, then we know that word cannot be zero and we can remove it from the list. Also, if n%r's third green number equals 0, we know that it cannot be the answer because r cannot be in the third spot. Similar logic is applied when multiple letters are yellow or some letters come up green. The value of each word does not change, so we can process this information once and store it in a txt file to be used later which is what I did in wordList.txt! If you would like to use a different set of words than what I used, feel free to change the words.txt file and run process.py to generate a new wordList file.

Optimizations

One way to make the algorithm take fewer guesses is to make smarter guesses. As such, an optimization I decided to make is to take into account letter frequency. Letters that appear more often have lower prime numbers associated with them and also that the word that is guessed always has the smallest number associated with it. Now, the primes associated with each letter aren't just chosen arbitrarily and actually tell us some information. "e" is the most common letter and as such has the six smallest prime numbers. I can sort the wordlist and make the algorithm guess the word with the smallest number. So, our algorithm is more likely to guess a word with "e" in it than "q" since words with "e" will probably be smaller. This is good because "e" is much more likely to be in the word than "q". Also, I only need to sort the list once in process.py so there is no significant performance hit!

A drawback of this approach is that words that are made up of repetitive common letters have very low values and are guessed much more. This is not good because words with repeating letters make it harder to narrow down our potential guesses! For example, consider the word "esses" which is made up of only of the two most common letters. It's good that our guesses consist of letters that are common but it is bad that we only get information about two different letters. The way I fixed this is by multiplying words that have characters repeated two or three times by a much bigger prime number so they are weighed down and guesses less often.

Another optimization I made is taking into account how common a word is. There are a lot of niche words in the list that are very rarely used which are likely not the answer to the puzzle. So, once I've narrowed down the possible words to less than a hundred, it makes sense to guess the more common words first. This is why I introduced a second number that is associated which each word. The second number is the frequency of a word in Wikipedia articles. Once there are less than 100 words in the list, the list is resorted by this second number rather than the first and so each guess will be the most common word remaining!

Further Optimizations

As I mentioned before, one of the optimizations I made was having more common letters correspond with smaller prime numbers and sorting the list of words based on the number associated with each word. This is all done just once for each set of words in process.py and is very computationally efficient. However, if more accuracy is desired, the prime number associated with each letter can be re-generated after each guess because the frequency of each letter is likely to change. This may increase accuracy slightly but will take much longer to process which is why I opted against it. After each guess, I would have to re-check the frequency of each letter, calculate the value of each word, and then resort to the entire list based on this new value.

Sources

  • Wordle is by PowerLanguage
  • List of 5 letter words is based on SOWPODS and was taken from Word Game Dictionary. I suspect that PowerLanguage used the same source for wordle as he used a similar source for another project.
  • The frequency of words was taken from lexepedia with a minimum frequency of 1, length of 5, and only includes Wiktionary Words.
Owner
Akil Selvan Rajendra Janarthanan
yo!
Akil Selvan Rajendra Janarthanan
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
Awesome Treasure of Transformers Models Collection

💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️

Ashish Patel 577 Jan 07, 2023
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022