A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

Overview

PySS3 Logo

Documentation Status Build Status codecov Requirements Status PyPI version Downloads Binder


A Python package implementing a new model for text classification with visualization tools for Explainable AI

🍣 Online live demos: http://tworld.io/ss3/ 🍦 🍨 🍰


The SS3 text classifier is a novel supervised machine learning model for text classification which has the ability to naturally explain its rationale. It was originally introduced in Section 3 of the paper "A text classification framework for simple and effective early depression detection over social media streams" (arXiv preprint). Given its white-box nature, it allows researchers and practitioners to deploy explainable, and therefore more reliable, models for text classification (which could be especially useful for those working with classification problems by which people's lives could be somehow affected).

Note: this package also incorporates different variations of the original model, such as the one introduced in "t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams" (arXiv preprint) which allows SS3 to recognize important variable-length word n-grams "on the fly".

What is PySS3?

PySS3 is a Python package that allows you to work with SS3 in a very straightforward, interactive and visual way. In addition to the implementation of the SS3 classifier, PySS3 comes with a set of tools to help you developing your machine learning models in a clearer and faster way. These tools let you analyze, monitor and understand your models by allowing you to see what they have actually learned and why. To achieve this, PySS3 provides you with 3 main components: the SS3 class, the Live_Test class, and the Evaluation class, as pointed out below.

👉 The SS3 class

which implements the classifier using a clear API (very similar to that of sklearn's models):

    from pyss3 import SS3
    clf = SS3()
    ...
    clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)

Also, this class provides a handful of other useful methods, such as, for instance, extract_insight() to extract the text fragments involved in the classification decision (allowing you to better understand the rationale behind the model’s predictions) or classify_multilabel() to provide multi-label classification support:

    doc = "Liverpool CEO Peter Moore on Building a Global Fanbase"
    
    # standard "single-label" classification
    label = clf.classify_label(doc) # 'business'

    # multi-label classification
    labels = clf.classify_multilabel(doc)  # ['business', 'sports']

👉 The Live_Test class

which allows you to interactively test your model and visually see the reasons behind classification decisions, with just one line of code:

    from pyss3.server import Live_Test
    from pyss3 import SS3

    clf = SS3()
    ...
    clf.fit(x_train, y_train)
    Live_Test.run(clf, x_test, y_test) # <- this one! cool uh? :)

As shown in the image below, this will open up, locally, an interactive tool in your browser which you can use to (live) test your models with the documents given in x_test (or typing in your own!). This will allow you to visualize and understand what your model is actually learning.

img

For example, we have uploaded two of these live tests online for you to try out: "Movie Review (Sentiment Analysis)" and "Topic Categorization", both were obtained following the tutorials.

👉 And last but not least, the Evaluation class

This is probably one of the most useful components of PySS3. As the name may suggest, this class provides the user easy-to-use methods for model evaluation and hyperparameter optimization, like, for example, the test, kfold_cross_validation, grid_search, and plot methods for performing tests, stratified k-fold cross validations, grid searches for hyperparameter optimization, and visualizing evaluation results using an interactive 3D plot, respectively. Probably one of its most important features is the ability to automatically (and permanently) record the history of evaluations that you've performed. This will save you a lot of time and will allow you to interactively visualize and analyze your classifier performance in terms of its different hyper-parameters values (and select the best model according to your needs). For instance, let's perform a grid search with a 4-fold cross-validation on the three hyperparameters, smoothness(s), significance(l), and sanction(p):

from pyss3.util import Evaluation
...
best_s, best_l, best_p, _ = Evaluation.grid_search(
    clf, x_train, y_train,
    s=[0.2, 0.32, 0.44, 0.56, 0.68, 0.8],
    l=[0.1, 0.48, 0.86, 1.24, 1.62, 2],
    p=[0.5, 0.8, 1.1, 1.4, 1.7, 2],
    k_fold=4
)

In this illustrative example, s, l, and p will take those 6 different values each, and once the search is over, this function will return (by default) the hyperparameter values that obtained the best accuracy. Now, we could also use the plot function to analyze the results obtained in our grid search using the interactive 3D evaluation plot:

Evaluation.plot()

img

In this 3D plot, each point represents an experiment/evaluation performed using that particular combination of values (s, l, and p). Also, these points are painted proportional to how good the performance was according to the selected metric; the plot will update "on the fly" when the user select a different evaluation metric (accuracy, precision, recall, f1, etc.). Additionally, when the cursor is moved over a data point, useful information is shown (including a "compact" representation of the confusion matrix obtained in that experiment). Finally, it is worth mentioning that, before showing the 3D plots, PySS3 creates a single and portable HTML file in your project folder containing the interactive plots. This allows users to store, send or upload the plots to another place using this single HTML file. For example, we have uploaded two of these files for you to see: "Sentiment Analysis (Movie Reviews)" and "Topic Categorization", both evaluation plots were also obtained following the tutorials.

Want to give PySS3 a shot? 👓

Just go to the Getting Started page :D

Installation

Simply use:

pip install pyss3

Want to contribute to this Open Source project? :octocat:

Thanks for your interest in the project, you're Awesome!! Any kind of help is very welcome (Code, Bug reports, Content, Data, Documentation, Design, Examples, Ideas, Feedback, etc.), Issues and/or Pull Requests are welcome for any level of improvement, from a small typo to new features, help us make PySS3 better 👍

Remember that you can use the "Edit" button ('pencil' icon) up the top to edit any file of this repo directly on GitHub.

Also, if you star this repo ( 🌟 ), you would be helping PySS3 to gain more visibility and reach the hands of people who may find it useful since repository lists and search results are usually ordered by the total number of stars.

Finally, in case you're planning to create a new Pull Request, for committing to this repo, we follow the "seven rules of a great Git commit message" from "How to Write a Git Commit Message", so make sure your commits follow them as well.

(please do not hesitate to send me an email to [email protected] for anything)

Contributors 💪 😎 👍

Thanks goes to these awesome people (emoji key):


Florian Angermeir

💻 🤔 🔣

Muneeb Vaiyani

🤔 🔣

Saurabh Bora

🤔

This project follows the all-contributors specification. Contributions of any kind welcome!

Further Readings 📜

Full documentation

API documentation

Paper preprint

Owner
Sergio Burdisso
Computer Science Ph.D. student. (NLP/ML/Data Mining)
Sergio Burdisso
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a model using HugginFace transformers framework.

Transformers are all you need In this workshop we will be exploring NLP state of the art transformers, with SOTA models like T5 and BERT, then build a

Aymen Berriche 8 Apr 13, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023