Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Overview

Divide and Remaster Utility Tools

CFP Icon

Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

The DnR dataset is build from three, well-established, audio datasets; Librispeech, Free Music Archive (FMA), and Freesound Dataset 50k (FSD50K). We offer our dataset in both 16kHz and 44.1kHz sampling-rate along time-stamped annotations for each of the classes (genre for 'music', audio-tags for 'sound-effects', and transcription for 'speech'). We provide below more informations on how the dataset is build and what it's consists of exactly. We also go over the process of building the dataset from scratch for the cases it needs to.



Dataset Overview

The Divide and Remaster (DnR) dataset is a dataset aiming at providing research support for a relatively unexplored case of source separation with mixtures involving music, speech, and sound-effects (SFX) as their sources. The dataset is build from three, well-established, datasets. Consequently if one wants to build DnR from scratch, the aforementioned datasets will have to be downloaded first. Alternatively, DnR is also available on Zenodo

Get the DnR Dataset

In order to obtain DnR, several options are available depending on the task at hand:

Download

  • DnR-HQ (44.1kHz) is available on Zenodo at the following or simply run:
link to the Zenodo dataset coming soon ...
  • Alternatively, if DnR-16kHz is needed, please first download DnR-HQ locally. You can then downsample the dataset (either in-place or not) by cloning the dnr-utils repository and running:
python dnr_utils.py --task=downsample --inplace=True

Building DnR From Scratch

In the section, we go over the DnR building process. Since DnR is directly drawn from *FSD50K*, *LibriSpeech*/*LibriVox*, and *FMA, we first need to download these datasets. Please head to the following links for more details on how to get them:

Datasets Downloads

FSD50K
FMA-Medium Set
LibriSpeech/LibriVox



Please note that for FMA, the medium set only is required. In addition to the audio files, the metadata should also be downloaded. For LibriSpeech DnR uses dev-clean, test-clean, and train-clean-100. DnR will use the folder structure as well as metadata from LibriSpeech, but ultimately will build the LibriSpeech-HQ dataset off the original LibriVox mp3s, which is why we need them both for building DnR.

After download, all four datasets are expected to be found in the same root directory. Our root tree may look something like that. As the standardization script will look for specific file name, please make sure that all directory names conform to the ones described below:

root
├── fma-medium
│   ├── fma_metadata
│   │   ├── genres.csv
│   │   └── tracks.csv
│   ├── 008
│   ├── 008
│   ├── 009
│   └── 010
│   └── ...
├── fsd50k
│   ├── FSD50K.dev_audio
│   ├── FSD50K.eval_audio
│   └── FSD50K.ground_truth
│   │   ├── dev.csv
│   │   ├── eval.csv
│   │   └── vocabulary.csv
├── librispeech
│   ├── dev-clean
│   ├── test-clean
│   └── train-clean-100
└── librivox
    ├── 14
    ├── 16
    └── 17
    └── ...

Datasets Standardization

Once all four datasets are downloaded, some standardization work needs to be taken care of. The standardization process can be be executed by running standardization.py, which can be found in the dnr-utils repository. Prior to running the script you may want to install all the necessary dependencies included as part of the requirement.txt with pip install -r requirements.txt. Note: pydub uses ffmpeg under its hood, a system install of fmmpeg is thus required. Please see pydub's install instructions for more information. The standardization command may look something like:

python standardization.py --fsd50k-path=./FSD50K --fma-path=./FMA --librivox-path=./LibriVox --librispeech-path=./LibiSpeech  --dest-dir=./dest --validate-audio=True

DnR Dataset Compilation

Once the three resulting datasets are standardized, we are ready to finally compile DnR. At this point you should already have cloned the dnr-utils repository, which contains two key files:

  • config.py contains some configuration entries needed by the main script builder. You want to set all the appropriate paths pointing to your local datasets and ground truth files in there.
  • The compilation for a given set (here, train, val, and eval) can be executed with compile_dataset.py, for example by running the following commands for each set:
python compile_dataset.py with cfg.train
python compile_dataset.py with cfg.val
python compile_dataset.py with cfg.eval

Known Issues

Some known bugs and issues that we're aware. if not listed below, feel free to open a new issue here:

  • If building from scratch, pydub will fail at reading 15 mp3 files from the FMA medium-set and will return the following error: mp3 @ 0x559b8b084880] Failed to read frame size: Could not seek to 1026.

  • If building DnR from scratch, the script may return the following error, coming from pyloudnorm: Audio must be have length greater than the block size. That's because some audio segment, especially SFX events, may be shorter than 0.2 seconds, which is the minimum sample length (window) required by pyloudnorm for normalizing the audio. We just ignore these segments.


Contact and Support

Have an issue, concern, or question about DnR or its utility tools ? If so, please open an issue here

For any other inquiries, feel free to shoot an email at: [email protected], my name is Darius Petermann ;)


Owner
Darius Petermann
Signal Processing and Machine Learning for Audio
Darius Petermann
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023