Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Overview

Divide and Remaster Utility Tools

CFP Icon

Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

The DnR dataset is build from three, well-established, audio datasets; Librispeech, Free Music Archive (FMA), and Freesound Dataset 50k (FSD50K). We offer our dataset in both 16kHz and 44.1kHz sampling-rate along time-stamped annotations for each of the classes (genre for 'music', audio-tags for 'sound-effects', and transcription for 'speech'). We provide below more informations on how the dataset is build and what it's consists of exactly. We also go over the process of building the dataset from scratch for the cases it needs to.



Dataset Overview

The Divide and Remaster (DnR) dataset is a dataset aiming at providing research support for a relatively unexplored case of source separation with mixtures involving music, speech, and sound-effects (SFX) as their sources. The dataset is build from three, well-established, datasets. Consequently if one wants to build DnR from scratch, the aforementioned datasets will have to be downloaded first. Alternatively, DnR is also available on Zenodo

Get the DnR Dataset

In order to obtain DnR, several options are available depending on the task at hand:

Download

  • DnR-HQ (44.1kHz) is available on Zenodo at the following or simply run:
link to the Zenodo dataset coming soon ...
  • Alternatively, if DnR-16kHz is needed, please first download DnR-HQ locally. You can then downsample the dataset (either in-place or not) by cloning the dnr-utils repository and running:
python dnr_utils.py --task=downsample --inplace=True

Building DnR From Scratch

In the section, we go over the DnR building process. Since DnR is directly drawn from *FSD50K*, *LibriSpeech*/*LibriVox*, and *FMA, we first need to download these datasets. Please head to the following links for more details on how to get them:

Datasets Downloads

FSD50K
FMA-Medium Set
LibriSpeech/LibriVox



Please note that for FMA, the medium set only is required. In addition to the audio files, the metadata should also be downloaded. For LibriSpeech DnR uses dev-clean, test-clean, and train-clean-100. DnR will use the folder structure as well as metadata from LibriSpeech, but ultimately will build the LibriSpeech-HQ dataset off the original LibriVox mp3s, which is why we need them both for building DnR.

After download, all four datasets are expected to be found in the same root directory. Our root tree may look something like that. As the standardization script will look for specific file name, please make sure that all directory names conform to the ones described below:

root
├── fma-medium
│   ├── fma_metadata
│   │   ├── genres.csv
│   │   └── tracks.csv
│   ├── 008
│   ├── 008
│   ├── 009
│   └── 010
│   └── ...
├── fsd50k
│   ├── FSD50K.dev_audio
│   ├── FSD50K.eval_audio
│   └── FSD50K.ground_truth
│   │   ├── dev.csv
│   │   ├── eval.csv
│   │   └── vocabulary.csv
├── librispeech
│   ├── dev-clean
│   ├── test-clean
│   └── train-clean-100
└── librivox
    ├── 14
    ├── 16
    └── 17
    └── ...

Datasets Standardization

Once all four datasets are downloaded, some standardization work needs to be taken care of. The standardization process can be be executed by running standardization.py, which can be found in the dnr-utils repository. Prior to running the script you may want to install all the necessary dependencies included as part of the requirement.txt with pip install -r requirements.txt. Note: pydub uses ffmpeg under its hood, a system install of fmmpeg is thus required. Please see pydub's install instructions for more information. The standardization command may look something like:

python standardization.py --fsd50k-path=./FSD50K --fma-path=./FMA --librivox-path=./LibriVox --librispeech-path=./LibiSpeech  --dest-dir=./dest --validate-audio=True

DnR Dataset Compilation

Once the three resulting datasets are standardized, we are ready to finally compile DnR. At this point you should already have cloned the dnr-utils repository, which contains two key files:

  • config.py contains some configuration entries needed by the main script builder. You want to set all the appropriate paths pointing to your local datasets and ground truth files in there.
  • The compilation for a given set (here, train, val, and eval) can be executed with compile_dataset.py, for example by running the following commands for each set:
python compile_dataset.py with cfg.train
python compile_dataset.py with cfg.val
python compile_dataset.py with cfg.eval

Known Issues

Some known bugs and issues that we're aware. if not listed below, feel free to open a new issue here:

  • If building from scratch, pydub will fail at reading 15 mp3 files from the FMA medium-set and will return the following error: mp3 @ 0x559b8b084880] Failed to read frame size: Could not seek to 1026.

  • If building DnR from scratch, the script may return the following error, coming from pyloudnorm: Audio must be have length greater than the block size. That's because some audio segment, especially SFX events, may be shorter than 0.2 seconds, which is the minimum sample length (window) required by pyloudnorm for normalizing the audio. We just ignore these segments.


Contact and Support

Have an issue, concern, or question about DnR or its utility tools ? If so, please open an issue here

For any other inquiries, feel free to shoot an email at: [email protected], my name is Darius Petermann ;)


Owner
Darius Petermann
Signal Processing and Machine Learning for Audio
Darius Petermann
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023