Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Overview

Learning Generative Models of Textured 3D Meshes from Real-World Images

This is the reference implementation of "Learning Generative Models of Textured 3D Meshes from Real-World Images", accepted at ICCV 2021.

Dario Pavllo, Jonas Kohler, Thomas Hofmann, Aurelien Lucchi. Learning Generative Models of Textured 3D Meshes from Real-World Images. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

This work is a follow-up of Convolutional Generation of Textured 3D Meshes, in which we learn a GAN for generating 3D triangle meshes and the corresponding texture maps using 2D supervision. In this work, we relax the requirement for keypoints in the pose estimation step, and generalize the approach to unannotated collections of images and new categories/datasets such as ImageNet.

Setup

Instructions on how to set up dependencies, datasets, and pretrained models can be found in SETUP.md

Quick start

In order to test our pretrained models, the minimal setup described in SETUP.md is sufficient. No dataset setup is required. We provide an interface for evaluating FID scores, as well as an interface for exporting a sample of generated 3D meshes (both as a grid of renderings and as .obj meshes).

Exporting a sample

You can export a sample of generated meshes using --export-sample. Here are some examples:

python run_generation.py --name pretrained_imagenet_car_singletpl --dataset imagenet_car --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_imagenet_airplane_singletpl --dataset imagenet_airplane --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_imagenet_elephant_singletpl --dataset imagenet_elephant --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_cub_singletpl --dataset cub --gpu_ids 0 --batch_size 10 --export_sample --how_many 40
python run_generation.py --name pretrained_all_singletpl --dataset all --conditional_class --gpu_ids 0 --batch_size 10 --export_sample --how_many 40

This will generate a sample of 40 meshes, render them from random viewpoints, and export the final result to the output directory as a png image. In addition, the script will export the meshes as .obj files (along with material and texture). These can be imported into Blender or other modeling tools. You can switch between the single-template and multi-template settings by appending either _singletpl or _multitpl to the experiment name.

Evaluating FID on pretrained models

You can evaluate the FID of a model by specifying --evaluate. For the models trained to generate a single category (setting A):

python run_generation.py --name pretrained_cub_singletpl --dataset cub --gpu_ids 0,1,2,3 --batch_size 64 --evaluate
python run_generation.py --name pretrained_p3d_car_singletpl --dataset p3d_car --gpu_ids 0,1,2,3 --batch_size 64 --evaluate
python run_generation.py --name pretrained_imagenet_zebra --dataset imagenet_zebra_singletpl --gpu_ids 0,1,2,3 --batch_size 64 --evaluate

For the conditional models trained to generate all classes (setting B), you can specify the category to evaluate (e.g. motorcycle):

python run_generation.py --name pretrained_all_singletpl --dataset all --conditional_class --gpu_ids 0,1,2,3 --batch_size 64 --evaluate --filter_class motorcycle

As before, you can switch between the single-template and multi-template settings by appending either _singletpl or _multitpl to the experiment name. You can of course also adjust the number of GPUs and batch size to suit your computational resources. For evaluation, 16 elements per GPU is a sensible choice. You can also tune the number of data-loading threads using the --num_workers argument (default: 4 threads). Note that the FID will exhibit a small variance depending on the chosen batch size.

Training

See TRAINING.md for the instructions on how to generate the pseudo-ground-truth dataset and train a new model from scratch. The documentation also provides instructions on how to run the pose estimation steps and run the pipeline from scratch on a custom dataset.

Citation

If you use this work in your research, please consider citing our paper(s):

@inproceedings{pavllo2021textured3dgan,
  title={Learning Generative Models of Textured 3D Meshes from Real-World Images},
  author={Pavllo, Dario and Kohler, Jonas and Hofmann, Thomas and Lucchi, Aurelien},
  booktitle={IEEE/CVF International Conference on Computer Vision (ICCV)},
  year={2021}
}

@inproceedings{pavllo2020convmesh,
  title={Convolutional Generation of Textured 3D Meshes},
  author={Pavllo, Dario and Spinks, Graham and Hofmann, Thomas and Moens, Marie-Francine and Lucchi, Aurelien},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}

License and Acknowledgments

Our work is licensed under the MIT license. For more details, see LICENSE. This repository builds upon convmesh and includes third-party libraries which may be subject to their respective licenses: Synchronized-BatchNorm-PyTorch, the data loader from CMR, and FID evaluation code from pytorch-fid.

Comments
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • how to test with the picture

    how to test with the picture

    I am very appreciated with your work.But I am wondering how can I test with my own picture. For example,I input an image of a car,and directly get the .obj and .png

    opened by lisentao 1
  • caffe2 error for detectron

    caffe2 error for detectron

    Hi,

    I am trying to test the code on a custom dataset. I downloaded seg_every_thing in the root, copied detections_vg3k.py to tools of the former. Built detectron from scratch, but still it gives me: AssertionError: Detectron ops lib not found; make sure that your Caffe2 version includes Detectron module There is no make file in the Ops lib of detectron. How can I fix this?

    opened by sinAshish 2
  • Person mesh and reconstruction reconstructing texture

    Person mesh and reconstruction reconstructing texture

    Thanks for your great work ... Wanna work on person class to create mesh as well as corresponding texture. can you refer dataset and steps to reach out..?

    opened by sharoseali 0
  • training on custom dataset

    training on custom dataset

    Thank you for your great work! currently, I'm following your work and trying to train on custom datasets. When I move on the data preparation part, I found the model weights in seg_every_thing repo are no long avaiable. I wonder is it possible for you to share the weights ('lib/datasets/data/trained_models/33219850_model_final_coco2vg3k_seg.pkl') used in tools/detection_tool_vg3k.py with us? Looking forward to your reply! Thanks~

    opened by pingping-lu 1
Releases(v1.0)
Owner
Dario Pavllo
PhD Student @ ETH Zurich
Dario Pavllo
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022