A project for developing transformer-based models for clinical relation extraction

Overview

Clinical Relation Extration with Transformers

Aim

This package is developed for researchers easily to use state-of-the-art transformers models for extracting relations from clinical notes. No prior knowledge of transformers is required. We handle the whole process from data preprocessing to training to prediction.

Dependency

The package is built on top of the Transformers developed by the HuggingFace. We have the requirement.txt to specify the packages required to run the project.

Background

Our training strategy is inspired by the paper: https://arxiv.org/abs/1906.03158 We only support train-dev mode, but you can do 5-fold CV.

Available models

  • BERT
  • XLNet
  • RoBERTa
  • ALBERT
  • DeBERTa
  • Longformer

We will keep adding new models.

usage and example

  • data format

see sample_data dir (train.tsv and test.tsv) for the train and test data format

The sample data is a small subset of the data prepared from the 2018 umass made1.0 challenge corpus

# data format: tsv file with 8 columns:
1. relation_type: adverse
2. sentence_1: ALLERGIES : [s1] Penicillin [e1] .
3. sentence_2: [s2] ALLERGIES [e2] : Penicillin .
4. entity_type_1: Drug
5. entity_type_2: ADE
6. entity_id_1: T1
7. entity_id2: T2
8. file_id: 13_10

note: 
1) the entity between [s1][e1] is the first entity in a relation; the second entity in the relation is inbetween [s2][e2]
2) even the two entities in the same sentenc, we still require to put them separately
3) in the test.tsv, you can set all labels to neg or no_relation or whatever, because we will not use the label anyway
4) We recommend to evaluate the test performance in a separate process based on prediction. (see **post-processing**)
5) We recommend using official evaluation scripts to do evaluation to make sure the results reported are reliable.
  • preprocess data (see the preprocess.ipynb script for more details on usage)

we did not provide a script for training and test data generation

we have a jupyter notebook with preprocessing 2018 n2c2 data as an example

you can follow our example to generate your own dataset

  • special tags

we use 4 special tags to identify two entities in a relation

# the defaults tags we defined in the repo are

EN1_START = "[s1]"
EN1_END = "[e1]"
EN2_START = "[s2]"
EN2_END = "[e2]"

If you need to customize these tags, you can change them in
config.py
  • training

please refer to the wiki page for all details of the parameters flag details

export CUDA_VISIBLE_DEVICES=1
data_dir=./sample_data
nmd=./new_modelzw
pof=./predictions.txt
log=./log.txt

# NOTE: we have more options available, you can check our wiki for more information
python ./src/relation_extraction.py \
		--model_type bert \
		--data_format_mode 0 \
		--classification_scheme 1 \
		--pretrained_model bert-base-uncased \
		--data_dir $data_dir \
		--new_model_dir $nmd \
		--predict_output_file $pof \
		--overwrite_model_dir \
		--seed 13 \
		--max_seq_length 256 \
		--cache_data \
		--do_train \
		--do_lower_case \
		--train_batch_size 4 \
		--eval_batch_size 4 \
		--learning_rate 1e-5 \
		--num_train_epochs 3 \
		--gradient_accumulation_steps 1 \
		--do_warmup \
		--warmup_ratio 0.1 \
		--weight_decay 0 \
		--max_num_checkpoints 1 \
		--log_file $log \
  • prediction
export CUDA_VISIBLE_DEVICES=1
data_dir=./sample_data
nmd=./new_model
pof=./predictions.txt
log=./log.txt

# we have to set data_dir, new_model_dir, model_type, log_file, and eval_batch_size, data_format_mode
python ./src/relation_extraction.py \
		--model_type bert \
		--data_format_mode 0 \
		--classification_scheme 1 \
		--pretrained_model bert-base-uncased \
		--data_dir $data_dir \
		--new_model_dir $nmd \
		--predict_output_file $pof \
		--overwrite_model_dir \
		--seed 13 \
		--max_seq_length 256 \
		--cache_data \
		--do_predict \
		--do_lower_case \
		--eval_batch_size 4 \
		--log_file $log \
  • post-processing (we only support transformation to brat format)
# see --help for more information
data_dir=./sample_data
pof=./predictions.txt

python src/data_processing/post_processing.py \
		--mode mul \
		--predict_result_file $pof \
		--entity_data_dir ./test_data_entity_only \
		--test_data_file ${data_dir}/test.tsv \
		--brat_result_output_dir ./brat_output

Using json file for experiment config instead of commend line

  • to simplify using the package, we support using json file for configuration
  • using json, you can define all parameters in a separate json file instead of input via commend line
  • config_experiment_sample.json is a sample json file you can follow to develop yours
  • to run experiment with json config, you need to follow run_json.sh
export CUDA_VISIBLE_DEVICES=1

python ./src/relation_extraction_json.py \
		--config_json "./config_experiment_sample.json"

Baseline (baseline directory)

  • We also implemented some baselines for relation extraction using machine learning approaches
  • baseline is for comparison only
  • baseline based on SVM
  • features extracted may not optimize for each dataset (cover most commonly used lexical and semantic features)
  • see baseline/run.sh for example

Issues

raise an issue if you have problems.

Citation

please cite our paper:

# We have a preprint at
https://arxiv.org/abs/2107.08957

Clinical Pre-trained Transformer Models

We have a series transformer models pre-trained on MIMIC-III. You can find them here:

Comments
  • prediction on large corpus

    prediction on large corpus

    The package will have issues dealing with the prediction on a large corpus (e.g., thousands of notes). We need to develop a batch process to avoid OOM issue and parallel may be to speed up.

    enhancement 
    opened by bugface 2
  • Not able to get the prediction for Test.csv

    Not able to get the prediction for Test.csv

    Hi

    I am just trying to run the code to get the predictions for the test.csv. i am trying with the pre trained model at https://transformer-models.s3.amazonaws.com/mimiciii_bert_10e_128b.zip.

    While running code I am getting an error as AttributeError: 'BertConfig' object has no attribute 'tags'

    Screen shot of my scree is as below

    image

    opened by vikasgoel2000 1
  • Binary classification with BCELoss or Focal Loss

    Binary classification with BCELoss or Focal Loss

    For binary mode, we currently still use CrossEntropyLoss, but BCELoss is designed for binary classification. We need to add options to use BCELoss or Focal Loss in binary mode

    enhancement 
    opened by bugface 1
  • Ok

    Ok

    Keep forgetting your Singpass username and password? Set it up once on Singpass app for password-free logins next time.

    Download Singpass app at https://app.singpass.gov.sg/share?src=gxe1ax

    opened by Andre11232 0
  • Confused on usage

    Confused on usage

    The input to the prediction model is a .tsv file where the first column is the relation type. So it is unclear to me why we need the model to predict the relation type again.

    Am I misunderstanding? For predicting relations for new data, will the first column be autofilled with NonRel?

    opened by jiwonjoung 1
  • roberta question

    roberta question

    Thank you for providing and actively maintaining this repository. I'm trying to run the roberta on the sample data, but I'm encountering an error (I have tested bert and deberta, and both worked well without any error)

    Here is the code I ran

    export CUDA_VISIBLE_DEVICES=1
    data_dir=./sample_data
    nmd=./roberta_re_model
    pof=./roberta_re_predictions.txt
    log=./roberta_re_log.txt
    
    python ./src/relation_extraction.py \
    		--model_type roberta \
    		--data_format_mode 0 \
    		--classification_scheme 2 \
    		--pretrained_model roberta-base \
    		--data_dir $data_dir \
    		--new_model_dir $nmd \
    		--predict_output_file $pof \
    		--overwrite_model_dir \
    		--seed 13 \
    		--max_seq_length 256 \
    		--cache_data \
    		--do_train \
    		--do_lower_case \
                    --do_predict \
    		--train_batch_size 4 \
    		--eval_batch_size 4 \
    		--learning_rate 1e-5 \
    		--num_train_epochs 3 \
    		--gradient_accumulation_steps 1 \
    		--do_warmup \
    		--warmup_ratio 0.1 \
    		--weight_decay 0 \
    		--max_num_checkpoints 1 \
    		--log_file $log \
    

    but I ran into this error:

    2022-05-12 06:07:50 - Transformer_Relation_Extraction - ERROR - Training error:
    Traceback (most recent call last):
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/relation_extraction.py", line 59, in app
        task_runner.train()
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/task.py", line 100, in train
        batch_output = self.model(**batch_input)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/models.py", line 159, in forward
        output_hidden_states=output_hidden_states
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py", line 849, in forward
        past_key_values_length=past_key_values_length,
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py", line 133, in forward
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/sparse.py", line 160, in forward
        self.norm_type, self.scale_grad_by_freq, self.sparse)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py", line 2183, in embedding
        return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
    RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
    
    Traceback (most recent call last):
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/relation_extraction.py", line 59, in app
        task_runner.train()
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/task.py", line 100, in train
        batch_output = self.model(**batch_input)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/models.py", line 159, in forward
        output_hidden_states=output_hidden_states
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py", line 849, in forward
        past_key_values_length=past_key_values_length,
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py", line 133, in forward
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/sparse.py", line 160, in forward
        self.norm_type, self.scale_grad_by_freq, self.sparse)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py", line 2183, in embedding
        return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
    RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
    Traceback (most recent call last):
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/relation_extraction.py", line 59, in app
        task_runner.train()
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/task.py", line 100, in train
        batch_output = self.model(**batch_input)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/models.py", line 159, in forward
        output_hidden_states=output_hidden_states
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py", line 849, in forward
        past_key_values_length=past_key_values_length,
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/transformers/models/roberta/modeling_roberta.py", line 133, in forward
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/sparse.py", line 160, in forward
        self.norm_type, self.scale_grad_by_freq, self.sparse)
      File "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py", line 2183, in embedding
        return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
    RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/relation_extraction.py", line 181, in <module>
        app(args)
      File "/content/drive/MyDrive/Colab Notebooks/ClinicalTransformer/src/relation_extraction.py", line 63, in app
        raise RuntimeError()
    RuntimeError
    

    Any help would be much appreciated. Thanks for your project!

    opened by jeonge1 4
  • save trained model as a RE model and a core model with only transformer layers

    save trained model as a RE model and a core model with only transformer layers

    we need to separately save the whole RE model and a core transformer model with only transformer layers so that the model can be used for other training tasks.

    enhancement 
    opened by bugface 0
  • ELECTRA and GPT2 support

    ELECTRA and GPT2 support

    Hi,

    I'm wondering how to add ELECTRA and GPT2 support to this module.

    Neither ELECTRA nor GPT2 has pooled output, unlike BERT/RoBERTa-based model.

    I noticed in the models.py the model is implemented as following:

            outputs = self.roberta(
                input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                position_ids=position_ids,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states
            )
    
            pooled_output = outputs[1]
            seq_output = outputs[0]
            logits = self.output2logits(pooled_output, seq_output, input_ids)
    
            return self.calc_loss(logits, outputs, labels)
    

    There are no pooled_output for ELECTRA/GPT2 sequence classification models, only seq_output is in the outputs variable.

    How to get around this limitation and get a working version of ELECTRA/GPT2? Thank you!

    opened by Stochastic-Adventure 2
Releases(v1.0.0)
Owner
uf-hobi-informatics-lab
codebase for hobi informatics lab
uf-hobi-informatics-lab
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Implementation of paper "DeepTag: A General Framework for Fiducial Marker Design and Detection"

Implementation of paper DeepTag: A General Framework for Fiducial Marker Design and Detection. Project page: https://herohuyongtao.github.io/research/

Yongtao Hu 46 Dec 12, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos This repository is the official tensorflow python implementation

Yasamin Jafarian 287 Jan 06, 2023
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022