(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

Related tags

Deep LearningBRNet
Overview

BRNet

fig_overview-c2

Introduction

This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds, CVPR 2021.

Authors: Bowen Cheng, Lu Sheng*, Shaoshuai Shi, Ming Yang, Dong Xu (*corresponding author)

[arxiv]

In this repository, we reimplement BRNet based on mmdetection3d for easier usage.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{cheng2021brnet,
  title={Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds},
  author={Cheng, Bowen and Sheng, Lu and Shi, Shaoshuai and Yang, Ming and Xu, Dong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Installation

This repo is built based on mmdetection3d (V0.11.0), please follow the getting_started.md for installation.

The code is tested under the following environment:

  • Ubuntu 16.04 LTS
  • Python 3.7.10
  • Pytorch 1.5.0
  • CUDA 10.1
  • GCC 7.3

Datasets

ScanNet

Please follow the instruction here to prepare ScanNet Data.

SUN RGB-D

Please follow the instruction here to prepare SUN RGB-D Data.

Download Trained Models

We provide the trained models of ScanNet and SUN RGB-D with per-class performances.

ScanNet V2 AP_0.25 AR_0.25 AP_0.50 AR_0.50
cabinet 0.4898 0.7634 0.2800 0.5349
bed 0.8849 0.9506 0.7915 0.8642
chair 0.9149 0.9357 0.8354 0.8604
sofa 0.9049 0.9794 0.8027 0.9278
table 0.6802 0.8486 0.6146 0.7600
door 0.5955 0.7430 0.3721 0.5418
window 0.4814 0.7092 0.2405 0.4078
bookshelf 0.5876 0.8701 0.5032 0.7532
picture 0.1716 0.3243 0.0687 0.1396
counter 0.6085 0.8846 0.3545 0.5385
desk 0.7538 0.9528 0.5481 0.7874
curtain 0.6275 0.7910 0.4126 0.5224
refrigerator 0.5467 0.9474 0.4882 0.8070
showercurtrain 0.7349 0.9643 0.5189 0.6786
toilet 0.9896 1.0000 0.9227 0.9310
sink 0.5901 0.6735 0.3521 0.4490
bathtub 0.8605 0.9355 0.8565 0.9032
garbagebin 0.4726 0.7151 0.3169 0.5170
Overall 0.6608 0.8327 0.5155 0.6624
SUN RGB-D AP_0.25 AR_0.25 AP_0.50 AR_0.50
bed 0.8633 0.9553 0.6544 0.7592
table 0.5136 0.8552 0.2981 0.5268
sofa 0.6754 0.8931 0.5830 0.7193
chair 0.7864 0.8723 0.6301 0.7137
toilet 0.8699 0.9793 0.7125 0.8345
desk 0.2929 0.8082 0.1134 0.4017
dresser 0.3237 0.7615 0.2058 0.4954
night_stand 0.5933 0.8627 0.4490 0.6588
bookshelf 0.3394 0.7199 0.1574 0.3652
bathtub 0.7505 0.8776 0.5383 0.6531
Overall 0.6008 0.8585 0.4342 0.6128

Note: Due to the detection results are unstable and fluctuate within 1~2 mAP points, the results here are slightly different from those in the paper.

Training

For ScanNet V2, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_scannet-3d-18class.py --seed 42

For SUN RGB-D, please run:

CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/brnet/brnet_8x1_sunrgbd-3d-10class.py --seed 42

Demo

To test a 3D detector on point cloud data, please refer to Single modality demo and Point cloud demo in MMDetection3D docs.

Here, we provide a demo on SUN RGB-D dataset.

CUDA_VISIBLE_DEVICES=0 python demo/pcd_demo.py sunrgbd_000094.bin demo/brnet_8x1_sunrgbd-3d-10class.py checkpoints/brnet_8x1_sunrgbd-3d-10class_trained.pth

Visualization results

ScanNet

SUN RGB-D

Acknowledgments

Our code is heavily based on mmdetection3d. Thanks mmdetection3d Development Team for their awesome codebase.

TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Xiong Weiyu 1 Jul 14, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022