OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

Related tags

Deep Learningoreo
Overview

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

Video demo

We here provide a video demo from confounded Enduro environment (see Figure 8 of the main draft). We also visualize the spatial attention map from a convolutional encoder trained with BC (medium) and OREO (right).

Enduro_total_demo_cropped

Installation

OREO requires CUDA 10.1 to run.

Install the dependencies:

conda install pytorch torchvision torchaudio cudatoolkit=10.1 -c pytorch
pip install dopamine_rl sklearn tqdm kornia dropblock atari-py==0.2.6 gsutil

Download DQN Replay dataset for expert demonstrations on Atari environments:

mkdir DATAPATH
cp download.sh DATAPATH
cd DATAPATH
sh download.sh

Pre-training

We here provide beta-VAE (for CCIL) and VQ-VAE (for CRLR and OREO) pretraining scripts. For other datasets, change the --env option.

beta-VAE

CUDA_VISIBLE_DEVICES=0,1,2,3 python atari_beta_vae.py --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --seed 1 --ch_div 4 --lmd 10

VQ-VAE

CUDA_VISIBLE_DEVICES=0,1,2,3 python atari_vqvae.py --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --seed 1

Training BC policy

We here provide training scripts for baselines and OREO. For other datasets, change the --env, --beta_vae_path, and --vqvae_path options.

Behavioral cloning

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --num_episodes 20 --num_eval_episodes 100

Dropout

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --original_dropout --prob 0.5 --num_episodes 20 --num_eval_episodes 100

DropBlock

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --dropblock --prob 0.3 --num_episodes 20 --num_eval_episodes 100

Cutout

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --input_cutout --num_episodes 20 --num_eval_episodes 100

RandomShift

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor.py --env=KungFuMaster --datapath DATAPATH --seed 1 --eval_interval 1000 --random_shift --num_episodes 20 --num_eval_episodes 100

CCIL (w/o interaction)

CUDA_VISIBLE_DEVICES=0 python atari_beta_vae_actor.py --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --num_eval_episodes 100 --seed 1 --eval_interval 1000 --prob 0.5 --ch_div 4 --beta_vae_path models_beta_vae_coord_conv_chdiv4_actor_lmd10.0/KungFuMaster_s1_epi20_con1_seed1_zdim50_beta4_kltol0_ep1000_beta_vae.pth

CRLR

CUDA_VISIBLE_DEVICES=0 python atari_cnn_actor_crlr.py --fixed_size 15000 --num_sub_iters 10 --eval_interval 10 --save_interval 10 --n_epochs 10 --env=KungFuMaster --datapath DATAPATH --num_episodes 20 --num_eval_episodes 100 --seed 1 --vqvae_path models_vqvae/KungFuMaster_s1_epi20_con1_seed1_ne512_c0.25_ep1000_vqvae.pth

OREO

CUDA_VISIBLE_DEVICES=0 python atari_vqvae_oreo.py --env=KungFuMaster --datapath DATAPATH --num_mask 5 --num_episodes 20 --num_eval_episodes 100 --seed 1 --eval_interval 1000 --prob 0.5 --vqvae_path models_vqvae/KungFuMaster_s1_epi20_con1_seed1_ne512_c0.25_ep1000_vqvae.pth
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023