Trajectory Extraction of road users via Traffic Camera

Overview

Traffic Monitoring

Citation

The associated paper for this project will be published here as soon as possible. When using this software, please cite the following:

@software{Strosahl_TrafficMonitoring,
author = {Strosahl, Julian},
license = {Apache-2.0},
title = {{TrafficMonitoring}},
url = {https://github.com/EFS-OpenSource/TrafficMonitoring},
version = {0.9.0}
}

Trajectory Extraction from Traffic Camera

This project was developed by Julian Strosahl Elektronische Fahrwerksyteme GmbH within the scope of the research project SAVeNoW (Project Website SAVe:)

This repository includes the Code for my Master Thesis Project about Trajectory Extraction from a Traffic Camera at an existing traffic intersection in Ingolstadt

The project is separated in different parts, at first a toolkit for capturing the live RTSP videostream from the camera. see here

The main project part is in this folder which contains a python script for training, evaluating and running a neuronal network, a tracking algorithm and extraction the trajectories to a csv file.

The training results (logs and metrics) are provided here

Example videos are provided here. You need to use Git LFS for access the videos.

Installation

  1. Install Miniconda
  2. Create Conda environment from existing file
conda env create --file environment.yml --name 
   

   

This will create a conda environment with your env name which contains all necessary python dependencies and OpenCV.

detectron2 is also necessary. You have to install it with for CUDA 11.0 For other CUDA version have a look in the installation instruction of detectron2.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html
  1. Provide the Network Weights for the Mask R-CNN:
  • Use Git LFS to get the model_weights in the right folder and download them.
  • If you don't want to use GIT LFS, you can download the weights and store them in the model_weights folder. You can find two different versions of weights, one default model 4 cats is trained on segmentation 4 different categories (Truck, Car, Bicycle and Person) and the other model 16 cats is trained on 16 categories but with bad results in some categories.

Getting Started Video

If you don't have a video just capture one here Quick Start Capture Video from Stream

For extracting trajectories cd traffic_monitoring and run it on a specific video. If you don't have one, just use this provided demo video:

python run_on_video.py --video ./videos/2021-01-13_16-32-09.mp4

The annotated video with segmentations will be stored in videos_output and the trajectory file in trajectory_output. The both result folders will be created by the script.

The trajectory file provides following structure:

frame_id category track_id x y x_opt y_opt
11 car 1 678142.80 5405298.02 678142.28 5405298.20
11 car 3 678174.98 5405294.48 678176.03 5405295.02
... ... ... ... ... ... ...
19 car 15 678142.75 5405308.82 678142.33 5405308.84

x and y use detection and the middle point of the bounding box(Baseline, naive Approach), x_opt and y_opt are calculated by segmentation and estimation of a ground plate of each vehicle (Our Approach).

Georeferencing

The provided software is optimized for one specific research intersection. You can provide a intersection specific dataset for usage in this software by changing the points file in config.

Quality of Trajectories

14 Reference Measurements with a measurement vehicle with dGPS-Sensor over the intersection show a deviation of only 0.52 meters (Mean Absolute Error, MAE) and 0.69 meters (root-mean-square error, RMSE)

The following images show the georeferenced map of the intersection with the measurement ground truth (green), middle point of bounding box (blue) and estimation via bottom plate (concept of our work) (red)

right_intersection right_intersection left_intersection

The evaluation can be done by the script evaluation_measurement.py. The trajectory files for the measurement drives are prepared in the [data/measurement] folder. Just run

python evaluation_measurement.py 

for getting the error plots and the georeferenced images.

Own Training

The segmentation works with detectron2 and with an own training. If you want to use your own dataset to improve segmentation or detection you can retrain it with

python train.py

The dataset, which was created as part of this work, is not yet publicly available. You just need to provide training, validation and test data in data. The dataset needs the COCO-format. For labeling you can use CVAT which provides pre-labeling and interpolation

The data will be read by ReadCOCODataset. In line 323 is a mapping configuration which can be configured for remap the labeled categories in own specified categories.

If you want to have a look on my training experience explore Training Results

Quality of Tracking

If you want only evaluate the Tracking algorithm SORT vs. Deep SORT there is the script evaluation_tracking.py for evaluate only the tracking algorithm by py-motmetrics. You need the labeled dataset for this.

Acknowledgment

This work is supported by the German Federal Ministry of Transport and Digital Infrastructure (BMVI) within the Automated and Connected Driving funding program under Grant No. 01MM20012F (SAVeNoW).

License

TrafficMonitoring is distributed under the Apache License 2.0. See LICENSE for more information.

Owner
Julian Strosahl
Julian Strosahl
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022