Code for MSc Quantitative Finance Dissertation

Overview

MSc Dissertation Code ReadMe

Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks

Curtis Nybo

MSc Quantitative Finance Dissertation 2020

This repository contains the code developed for my MSc Dissertation.

The Data

The data is retrieved from the Kenneth R. French data library (1). The dataset contains all U.S stocks, sorted into five sectors by SIC code. The datasets I have used in this study are provided in the 'Data' folder. The folder contains the original dataset and a summary of the dataset, and each specific has been extracted to its own file.

The Code

The thesis paper uses six Jupyter notebooks that were developed for this project. Three GARCH specifications and three ANN architectures are considered with one notebook for each.

The ANN notebooks are comprised of one notebook per architecture (5,1,1), (5,12,1), and (5,50,1).

The GARCH notebooks are comprised of one notebook for the GARCH(p,q), GARCH(1,1), and EGARCH(p,q) model.

How to use

Each notebook is commented throughout to guide reproducibility. The data in this repository needs to be placed in a local directory, then the code needs to be changed to point to that directory. The script should then read in the data and follow the same computations in this study.

To replicate the conda environment used to develop and run the code, see the tensorflowML.yml file in the repository. This contains all Python packages used and their corresponding versions. This yml file can be directly imported into Conda to reproduce the environment used in this study.

References

Many thanks to those who provided resources and prior work to leverage in my notebooks and scripts. More specific referencing is completed in each notebook.

(1) Data Library - Kenneth R. French - https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html - 2020

(2) Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras - Jason Brownlee, PhD - https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ - 2016

(3) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition - Aurélien Géron - https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ - 2019

(4) TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems - https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf - 2015

(5) Kevin Sheppard, Stanislav Khrapov, Gábor Lipták, mikedeltalima, Rob Capellini, esvhd, … jbrockmendel. (2019, November 22). bashtage/arch: Release 4.13 (Version 4.13). Zenodo. http://doi.org/10.5281/zenodo.3551028

(6) Auquan - Time Series Analysis for Financial Data VI— GARCH model and predicting SPX returns - https://medium.com/auquan/time-series-analysis-for-finance-arch-garch-models-822f87f1d755 - 2017

(7) Sarit Maitra - Forecasting using GARCH Processes & Monte-Carlo Simulations: statistical analysis & mathematical model using Python - https://towardsdatascience.com/garch-processes-monte-carlo-simulations-for-analytical-forecast-27edf77b2787 - 2019

A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
A small library of 3D related utilities used in my research.

utils3D A small library of 3D related utilities used in my research. Installation Install via GitHub pip install git+https://github.com/Steve-Tod/util

Zhenyu Jiang 8 May 20, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022