Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Related tags

Deep Learningdeepex
Overview

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation

Source code repo for paper Zero-Shot Information Extraction as a Unified Text-to-Triple Translation, EMNLP 2021.

Installation

git clone --recursive [email protected]:cgraywang/deepex.git
cd ./deepex
conda create --name deepex python=3.7 -y
conda activate deepex
pip install -r requirements.txt
pip install -e .

Requires PyTorch version 1.5.1 or above with CUDA. PyTorch 1.7.1 with CUDA 10.1 is tested. Please refer to https://pytorch.org/get-started/locally/ for installing PyTorch.

Dataset Preparation

Relation Classification

FewRel

You can add --prepare-rc-dataset argument when running the scripts in this section, which would allow the script to automatically handle the preparation of FewRel dataset.

Or, you could manually download and prepare the FewRel dataset using the following script:

bash scripts/rc/prep_FewRel.sh

The processed data will be stored at data/FewRel/data.jsonl.

TACRED

TACRED is licensed under LDC, please first download TACRED dataset from link. The downloaded file should be named as tacred_LDC2018T24.tgz.

After downloading and correctly naming the tacred .tgz data file, you can add --prepare-rc-dataset argument when running the scripts in this section, which would allow the script to automatically handle the preparation of TACRED dataset.

Or, you could manually download and prepare the TACRED dataset using the following script:

bash scripts/rc/prep_TACRED.sh

The processed data will be stored at data/TACRED/data.jsonl.

Scripts for Reproducing Results

This section contains the scripts for running the tasks with default setting (e.g.: using model bert-large-cased, using 8 CUDA devices with per-device batch size equal to 4).

To modify the settings, please checkout this section.

Open Information Extraction

bash tasks/OIE_2016.sh
bash tasks/PENN.sh
bash tasks/WEB.sh
bash tasks/NYT.sh

Relation Classification

bash tasks/FewRel.sh
bash tasks/TACRED.sh

Arguments

General script:

python scripts/manager.py --task=<task_name> <other_args>

The default setting is:

python scripts/manager.py --task=<task_name> --model="bert-large-cased" --beam-size=6
                          --max-distance=2048 --batch-size-per-device=4 --stage=0
                          --cuda=0,1,2,3,4,5,6,7

All tasks are already implemented as above .sh files in tasks/, using the default arguments.

The following are the most important command-line arguments for the scripts/manager.py script:

  • --task: The task to be run, supported tasks are OIE_2016, WEB, NYT, PENN, FewRel and TACRED.
  • --model: The pre-trained model type to be used for generating attention matrices to perform beam search on, supported models are bert-base-cased and bert-large-cased.
  • --beam-size: The beam size during beam search.
  • --batch-size-per-device: The batch size on a single device.
  • --stage: Run task starting from an intermediate stage:
    • --stage=0: data preparation and beam-search
    • --stage=1: post processing
    • --stage=2: ranking
    • --stage=3: evaluation
  • --prepare-rc-dataset: If true, automatically run the relation classification dataset preparation scripts. Notice that this argument should be turned on only for relation classification tasks (i.e.: FewRel and TACRED).
  • --cuda: Specify CUDA gpu devices.

Run python scripts/manager.py -h for the full list.

Results

NOTE

We are able to obtain improved or same results compared to the paper's results. We will release the code and datasets for factual probe soon!

Related Work

We implement an extended version of the beam search algorithm proposed in Language Models are Open Knowledge Graphs in src/deepex/model/kgm.py.

Citation

@inproceedings{wang-etal-2021-deepex,
    title = "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation",
    author = "Chenguang Wang and Xiao Liu and Zui Chen and Haoyun Hong and Jie Tang and Dawn Song",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    publisher = "Association for Computational Linguistics"
}

@article{wang-etal-2020-language,
    title = "Language Models are Open Knowledge Graphs",
    author = "Chenguang Wang and Xiao Liu and Dawn Song",
    journal = "arXiv preprint arXiv:2010.11967",
    year = "2020"
}
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022