Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

Overview

TestRank in Pytorch

Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Yannan Liu, and Qiang Xu.

If you find this repository useful for your work, please consider citing it as follows:

@article{yu2021testrank,
  title={TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks},
  author={Yu Li, Min Li, Qiuxia Lai, Yannan Liu, and Qiang Xu},
  journal={NeurIPS},
  year={2021}
}

1. Setup

Install dependencies

conda env create -f environment.yml

Please run the code on GPU.

2. Runing

There are mainly three steps involved:

  • Prepare the DL models to be tested
  • Prepare the unsupervised BYOL feature extractor
  • Launch a specific test input prioritization technique

We illustrate these steps as the following.

2.1. Download the Pre-trained DL model under test

Please download the classifiers to corresponding folder ./checkpoint/{dataset}/ckpt_bias/

If you want to train your own classifiers, please refer to the Training part.

2.2. Download the Feature extractor

We papare pretrained feature extractor for the each (e.g. CIFAR-10, SVHN, STL10) dataset. Please put the downloaded file in the "./ckpt_byol/" folder.

If you want to train your own classifiers, please refer to the Training part.

2.3. Perform Test Selection

Call the 'run.sh' file with argument 'selection':

  ./run.sh selection

Configure your run.sh follow the discription below

  python selection.py \
              --dataset $DATASET \                   # specify the dataset to use
              --manualSeed ${RANDOM_SEED} \          # random seed
              --model2test_arch $MODEL2TEST \        # architecture of the model under test (e.g. resnet18)
              --model2test_path $MODEL2TESTPATH \    # the path storing the model weights 
              --model_number $MODEL_NO \             # which model to test, model 0, 1, or 2?
              --save_path ${save_path} \             # The result will be stored in here
              --data_path ${DATA_ROOT} \             # Dataset root path
              --graph_nn \                           # use graph neural network in testrank
              --feature_extractor_id ${feature_extractor_id} \ # type of feature extractor, 0: BYOL model, 1: the model under test
              --no_neighbors ${no_neighbors} \       # number of neighbors in to constract graph
              --learn_mixed                          # use mlp to combine intrinsic and contextual attributes; otherwise they are brute force combined (multiplication two scores)
              --baseline_gini                        # Use certain baseline method to perform selection, otherwise leave it blank
  • The result is stored in '{save_path}/{date}/{dataset}_{model}/xxx_result.csv' in where xxx stands for the selection method used (e.g. for testrank, the file would be gnn_result.csv)

  • The TRC value is in the last column, and the forth column shows the corresponding budget in percent.

  • To compare with baselines, please specify the corresponding baseline method (e.g. baseline_gini, baseline_uncertainty, baseline_dsa, baseline_mcp):

  • To evaluate different models, change the MODEL_NO to the corresponding model: [0, 1, 2]

3. Training

3.1. Train classifier

If you want to train your own DL model instead of using the pretrained ones, run this command:

./run.sh trainm
  • The trained model will be stored in path './checkpoint/dataset/ckpt_bias/*'.

  • Each model will be assigned with a unique ID (e.g. 0, 1, 2).

  • The code used to train the model are resides in the train_classifier.py file. If you want to change the dataset or model architecture, please modify 'DATASET=dataset_name' or 'MODEL=name'with the desired ones in the run.sh file.

3.2 Train BYOL Feature Extractor

Please refer to this code.

4. Contact

If there are any questions, feel free to send a message to [email protected]

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
jiant is an NLP toolkit

🚨 Update 🚨 : As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks,

ML² AT CILVR 1.5k Dec 28, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022