LUKE -- Language Understanding with Knowledge-based Embeddings

Related tags

Text Data & NLPluke
Overview

LUKE

CircleCI


LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. It was proposed in our paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention. It achieves state-of-the-art results on important NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing).

This repository contains the source code to pre-train the model and fine-tune it to solve downstream tasks.

News

November 24, 2021: Entity disambiguation example is available

The example code of entity disambiguation based on LUKE has been added to this repository. This model was originally proposed in our paper, and achieved state-of-the-art results on five standard entity disambiguation datasets: AIDA-CoNLL, MSNBC, AQUAINT, ACE2004, and WNED-WIKI.

For further details, please refer to the example directory.

August 3, 2021: New example code based on Hugging Face Transformers and AllenNLP is available

New fine-tuning examples of three downstream tasks, i.e., NER, relation classification, and entity typing, have been added to LUKE. These examples are developed based on Hugging Face Transformers and AllenNLP. The fine-tuning models are defined using simple AllenNLP's Jsonnet config files!

The example code is available in the examples_allennlp directory.

May 5, 2021: LUKE is added to Hugging Face Transformers

LUKE has been added to the master branch of the Hugging Face Transformers library. You can now solve entity-related tasks (e.g., named entity recognition, relation classification, entity typing) easily using this library.

For example, the LUKE-large model fine-tuned on the TACRED dataset can be used as follows:

>>> from transformers import LukeTokenizer, LukeForEntityPairClassification
>>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [(0, 7), (17, 28)]  # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_idx = int(logits[0].argmax())
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: per:cities_of_residence

We also provide the following three Colab notebooks that show how to reproduce our experimental results on CoNLL-2003, TACRED, and Open Entity datasets using the library:

Please refer to the official documentation for further details.

November 5, 2021: LUKE-500K (base) model

We released LUKE-500K (base), a new pretrained LUKE model which is smaller than existing LUKE-500K (large). The experimental results of the LUKE-500K (base) and LUKE-500K (large) on SQuAD v1 and CoNLL-2003 are shown as follows:

Task Dataset Metric LUKE-500K (base) LUKE-500K (large)
Extractive Question Answering SQuAD v1.1 EM/F1 86.1/92.3 90.2/95.4
Named Entity Recognition CoNLL-2003 F1 93.3 94.3

We tuned only the batch size and learning rate in the experiments based on LUKE-500K (base).

Comparison with State-of-the-Art

LUKE outperforms the previous state-of-the-art methods on five important NLP tasks:

Task Dataset Metric LUKE-500K (large) Previous SOTA
Extractive Question Answering SQuAD v1.1 EM/F1 90.2/95.4 89.9/95.1 (Yang et al., 2019)
Named Entity Recognition CoNLL-2003 F1 94.3 93.5 (Baevski et al., 2019)
Cloze-style Question Answering ReCoRD EM/F1 90.6/91.2 83.1/83.7 (Li et al., 2019)
Relation Classification TACRED F1 72.7 72.0 (Wang et al. , 2020)
Fine-grained Entity Typing Open Entity F1 78.2 77.6 (Wang et al. , 2020)

These numbers are reported in our EMNLP 2020 paper.

Installation

LUKE can be installed using Poetry:

$ poetry install

The virtual environment automatically created by Poetry can be activated by poetry shell.

Released Models

We initially release the pre-trained model with 500K entity vocabulary based on the roberta.large model.

Name Base Model Entity Vocab Size Params Download
LUKE-500K (base) roberta.base 500K 253 M Link
LUKE-500K (large) roberta.large 500K 483 M Link

Reproducing Experimental Results

The experiments were conducted using Python3.6 and PyTorch 1.2.0 installed on a server with a single or eight NVidia V100 GPUs. We used NVidia's PyTorch Docker container 19.02. For computational efficiency, we used mixed precision training based on APEX library which can be installed as follows:

$ git clone https://github.com/NVIDIA/apex.git
$ cd apex
$ git checkout c3fad1ad120b23055f6630da0b029c8b626db78f
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .

The APEX library is not needed if you do not use --fp16 option or reproduce the results based on the trained checkpoint files.

The commands that reproduce the experimental results are provided as follows:

Entity Typing on Open Entity Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-typing run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-typing run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=2 \
    --gradient-accumulation-steps=2 \
    --learning-rate=1e-5 \
    --num-train-epochs=3 \
    --fp16

Relation Classification on TACRED Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    relation-classification run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    relation-classification run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=4 \
    --gradient-accumulation-steps=8 \
    --learning-rate=1e-5 \
    --num-train-epochs=5 \
    --fp16

Named Entity Recognition on CoNLL-2003 Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    ner run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli\
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    ner run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=2 \
    --gradient-accumulation-steps=4 \
    --learning-rate=1e-5 \
    --num-train-epochs=5 \
    --fp16

Cloze-style Question Answering on ReCoRD Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-span-qa run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --num-gpus=8 \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-span-qa run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=1 \
    --gradient-accumulation-steps=4 \
    --learning-rate=1e-5 \
    --num-train-epochs=2 \
    --fp16

Extractive Question Answering on SQuAD 1.1 Dataset

Dataset: Link
Checkpoint file (compressed): Link
Wikipedia data files (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    reading-comprehension run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-negative \
    --wiki-link-db-file=enwiki_20160305.pkl \
    --model-redirects-file=enwiki_20181220_redirects.pkl \
    --link-redirects-file=enwiki_20160305_redirects.pkl \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --num-gpus=8 \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    reading-comprehension run \
    --data-dir=<DATA_DIR> \
    --no-negative \
    --wiki-link-db-file=enwiki_20160305.pkl \
    --model-redirects-file=enwiki_20181220_redirects.pkl \
    --link-redirects-file=enwiki_20160305_redirects.pkl \
    --train-batch-size=2 \
    --gradient-accumulation-steps=3 \
    --learning-rate=15e-6 \
    --num-train-epochs=2 \
    --fp16

Citation

If you use LUKE in your work, please cite the original paper:

@inproceedings{yamada2020luke,
  title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
  author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
  booktitle={EMNLP},
  year={2020}
}

Contact Info

Please submit a GitHub issue or send an e-mail to Ikuya Yamada ([email protected]) for help or issues using LUKE.

Owner
Studio Ousia
Studio Ousia
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Speach Recognitions

easy_meeting Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting. Website - http://cf5c-62-192-251-83.ngrok.io/ Принципиа

Maksim 3 Feb 18, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Client library to download and publish models and other files on the huggingface.co hub

huggingface_hub Client library to download and publish models and other files on the huggingface.co hub Do you have an open source ML library? We're l

Hugging Face 644 Jan 01, 2023
C.J. Hutto 3.8k Dec 30, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022