Speach Recognitions

Overview

easy_meeting

photo_2021-10-20 12 07 05

Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting.

Website - http://cf5c-62-192-251-83.ngrok.io/

Принципиально данный сервис можно разделить на три основных и два дополнительных шага.

К основным шагам относится:
💁 Загрузка файла в сервис;
💁 Обработка файла;
💁 Редактирование и сохранение.

Дополнительные шаги включают в себя:
🧐 Получение саммари текста
🤓 Возможность задать вопросы к тексту (возможность поиска по ключевым словам)

Первым этапом работы сервиса является загрузка в него исходного файла. Сервис Easy Meeting может принимать файл из 2-х источников: Загрузить файлы с устройства; Вставить ссылку с YouTube. Во время загрузки файла вам не нужно думать о его формате. Данный сервис работает со всеми форматами (видео/аудио).

01

Для того чтобы загрузить файл с компьютера, необходимо нажать на кнопку “Загрузить файл с устройства”, после чего появится возможность выбрать файл с диска.

02

Если у вас есть ссылка на YouTube, то выберите пункт “Укажите ссылку на YouTube”, после чего вставьте необходимую ссылку в поле.

03

Ожидайте загрузку файла.

04

После того как вы выбрали один из методов загрузки файла и загрузили его в сервис Easy Meeting, вы увидите надпись “Данные загружены! Теперь можно приступить к извлечению файла”.

Чтобы начать обработку файла и извлечение текста из аудио, нажмите кнопку “Обработать”. Начнется обработка файла, вы увидите прогресс бар, в котором будет отражено время выполнения алгоритма преобразования речи в текст.

12

После того как прогресс бар будет заполнен на 100% , появится сообщение “Текст распознан! Теперь его можно посмотреть и при необходимости отредактировать”.

Ниже вы увидите окошко, в котором будет весь распознанный текст с возможностью его редактирования.

07

Когда закончите с редактированием, то ниже данного окошка появятся две кнопки: “Скачать аудио” и “Скачать распознанный текст”.

Также в нашем сервисе предусмотрены две дополнительные функции:

  1. Функция суммаризации текста
  2. Q&A с текстом 💁

08

Для того чтобы получить краткое описание всей конференции и не читать все страницы, вы можете получить выжимку, нажав на кнопку “Получить краткое содержание”, в результате наш алгоритм предложит вам сжатую версию конференции, которой вы сможете ознакомиться с основными тезисами любой встречи.

09

Вторая не менее важная дополнительная функция доступна в интерфейсе в левой части экрана и появляется только после обработки аудио и получения полной версии текста. В данной функции вы сможете задать вопрос по тексту.

11

Например, если вы пропустили совещание и не знаете, шла ли речь о вас или нет 🤓 🙈 вы можете спросить у нейронной сети, что говорили про (конечно) Ивана Ивановича Иванова.

После того как файл обработан и все необходимые файлы скачаны, вы можете проделать эту процедуру еще раз. Для этого просто вернитесь к первому шагу выбора файла.

В связи с ограниченными ресурсами hardware, оптимальное время работы алгоритмов:

Из расчёта записи в 1 час.

  1. Загрузка файла ~2 минут
  2. Обработка файла и получение транскрибации ~ 5 минут
  3. Суммаризация текста ~ 3 минуты
  4. Q&A ~ 1-2 минуты

Для локального запуска необходимо в корневой директории проекта создать папку "models"
В нее поместить файлы находящиеся в папке models на облаке:
https://drive.google.com/drive/folders/1Bkzutf6FJf7Qm05GEf9C6Dmd05wBzjjk?usp=sharing

Далее запустить в cmd:
pip install -r requirements.txt
streamlit run app_run.py

Все глобальные переменные для моделей изменяются в config.py

Спасибо! Надеемся, вам понравился наш быстрый и удобный сервис Easy Meeting!

С уважением,
команда Teenage Mutant Ninja Turtles (TMNT)

10

Owner
Maksim
Maksim
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022