Speach Recognitions

Overview

easy_meeting

photo_2021-10-20 12 07 05

Добро пожаловать в интерфейс сервиса автопротоколирования совещаний Easy Meeting.

Website - http://cf5c-62-192-251-83.ngrok.io/

Принципиально данный сервис можно разделить на три основных и два дополнительных шага.

К основным шагам относится:
💁 Загрузка файла в сервис;
💁 Обработка файла;
💁 Редактирование и сохранение.

Дополнительные шаги включают в себя:
🧐 Получение саммари текста
🤓 Возможность задать вопросы к тексту (возможность поиска по ключевым словам)

Первым этапом работы сервиса является загрузка в него исходного файла. Сервис Easy Meeting может принимать файл из 2-х источников: Загрузить файлы с устройства; Вставить ссылку с YouTube. Во время загрузки файла вам не нужно думать о его формате. Данный сервис работает со всеми форматами (видео/аудио).

01

Для того чтобы загрузить файл с компьютера, необходимо нажать на кнопку “Загрузить файл с устройства”, после чего появится возможность выбрать файл с диска.

02

Если у вас есть ссылка на YouTube, то выберите пункт “Укажите ссылку на YouTube”, после чего вставьте необходимую ссылку в поле.

03

Ожидайте загрузку файла.

04

После того как вы выбрали один из методов загрузки файла и загрузили его в сервис Easy Meeting, вы увидите надпись “Данные загружены! Теперь можно приступить к извлечению файла”.

Чтобы начать обработку файла и извлечение текста из аудио, нажмите кнопку “Обработать”. Начнется обработка файла, вы увидите прогресс бар, в котором будет отражено время выполнения алгоритма преобразования речи в текст.

12

После того как прогресс бар будет заполнен на 100% , появится сообщение “Текст распознан! Теперь его можно посмотреть и при необходимости отредактировать”.

Ниже вы увидите окошко, в котором будет весь распознанный текст с возможностью его редактирования.

07

Когда закончите с редактированием, то ниже данного окошка появятся две кнопки: “Скачать аудио” и “Скачать распознанный текст”.

Также в нашем сервисе предусмотрены две дополнительные функции:

  1. Функция суммаризации текста
  2. Q&A с текстом 💁

08

Для того чтобы получить краткое описание всей конференции и не читать все страницы, вы можете получить выжимку, нажав на кнопку “Получить краткое содержание”, в результате наш алгоритм предложит вам сжатую версию конференции, которой вы сможете ознакомиться с основными тезисами любой встречи.

09

Вторая не менее важная дополнительная функция доступна в интерфейсе в левой части экрана и появляется только после обработки аудио и получения полной версии текста. В данной функции вы сможете задать вопрос по тексту.

11

Например, если вы пропустили совещание и не знаете, шла ли речь о вас или нет 🤓 🙈 вы можете спросить у нейронной сети, что говорили про (конечно) Ивана Ивановича Иванова.

После того как файл обработан и все необходимые файлы скачаны, вы можете проделать эту процедуру еще раз. Для этого просто вернитесь к первому шагу выбора файла.

В связи с ограниченными ресурсами hardware, оптимальное время работы алгоритмов:

Из расчёта записи в 1 час.

  1. Загрузка файла ~2 минут
  2. Обработка файла и получение транскрибации ~ 5 минут
  3. Суммаризация текста ~ 3 минуты
  4. Q&A ~ 1-2 минуты

Для локального запуска необходимо в корневой директории проекта создать папку "models"
В нее поместить файлы находящиеся в папке models на облаке:
https://drive.google.com/drive/folders/1Bkzutf6FJf7Qm05GEf9C6Dmd05wBzjjk?usp=sharing

Далее запустить в cmd:
pip install -r requirements.txt
streamlit run app_run.py

Все глобальные переменные для моделей изменяются в config.py

Спасибо! Надеемся, вам понравился наш быстрый и удобный сервис Easy Meeting!

С уважением,
команда Teenage Mutant Ninja Turtles (TMNT)

10

Owner
Maksim
Maksim
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Pretrain_Bert_with_MaskLM Info 使用Mask LM预训练任务来预训练Bert模型。 基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。 Pretraining Task Mask Language Model,简称Mask LM,即

Desmond Ng 24 Dec 10, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 02, 2023
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022