This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Overview

Pattern-Exploiting Training (PET)

This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference and It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners. The papers introduce pattern-exploiting training (PET), a semi-supervised training procedure that reformulates input examples as cloze-style phrases. In low-resource settings, PET and iPET significantly outperform regular supervised training, various semi-supervised baselines and even GPT-3 despite requiring 99.9% less parameters. The iterative variant of PET (iPET) trains multiple generations of models and can even be used without any training data.

#Examples Training Mode Yelp (Full) AG's News Yahoo Questions MNLI
0 unsupervised 33.8 69.5 44.0 39.1
iPET 56.7 87.5 70.7 53.6
100 supervised 53.0 86.0 62.9 47.9
PET 61.9 88.3 69.2 74.7
iPET 62.9 89.6 71.2 78.4

Note: To exactly reproduce the above results, make sure to use v1.1.0 (--branch v1.1.0).

📑 Contents

🔧 Setup

💬 CLI Usage

💻 API Usage

🐶 Train your own PET

📕 Citation

🔧 Setup

All requirements for PET can be found in requirements.txt. You can install all required packages with pip install -r requirements.txt.

💬 CLI Usage

The command line interface cli.py in this repository currently supports three different training modes (PET, iPET, supervised training), two additional evaluation methods (unsupervised and priming) and 13 different tasks. For Yelp Reviews, AG's News, Yahoo Questions, MNLI and X-Stance, see the original paper for further details. For the 8 SuperGLUE tasks, see this paper.

PET Training and Evaluation

To train and evaluate a PET model for one of the supported tasks, simply run the following command:

python3 cli.py \
--method pet \
--pattern_ids $PATTERN_IDS \
--data_dir $DATA_DIR \
--model_type $MODEL_TYPE \
--model_name_or_path $MODEL_NAME_OR_PATH \
--task_name $TASK \
--output_dir $OUTPUT_DIR \
--do_train \
--do_eval

where

  • $PATTERN_IDS specifies the PVPs to use. For example, if you want to use all patterns, specify PATTERN_IDS 0 1 2 3 4 for AG's News and Yahoo Questions or PATTERN_IDS 0 1 2 3 for Yelp Reviews and MNLI.
  • $DATA_DIR is the directory containing the train and test files (check tasks.py to see how these files should be named and formatted for each task).
  • $MODEL_TYPE is the name of the model being used, e.g. albert, bert or roberta.
  • $MODEL_NAME is the name of a pretrained model (e.g., roberta-large or albert-xxlarge-v2) or the path to a pretrained model.
  • $TASK_NAME is the name of the task to train and evaluate on.
  • $OUTPUT_DIR is the name of the directory in which the trained model and evaluation results are saved.

You can additionally specify various training parameters for both the ensemble of PET models corresponding to individual PVPs (prefix --pet_) and for the final sequence classification model (prefix --sc_). For example, the default parameters used for our SuperGLUE evaluation are:

--pet_per_gpu_eval_batch_size 8 \
--pet_per_gpu_train_batch_size 2 \
--pet_gradient_accumulation_steps 8 \
--pet_max_steps 250 \
--pet_max_seq_length 256 \
--pet_repetitions 3 \
--sc_per_gpu_train_batch_size 2 \
--sc_per_gpu_unlabeled_batch_size 2 \
--sc_gradient_accumulation_steps 8 \
--sc_max_steps 5000 \
--sc_max_seq_length 256 \
--sc_repetitions 1

For each pattern $P and repetition $I, running the above command creates a directory $OUTPUT_DIR/p$P-i$I that contains the following files:

  • pytorch_model.bin: the finetuned model, possibly along with some model-specific files (e.g, spiece.model, special_tokens_map.json)
  • wrapper_config.json: the configuration of the model being used
  • train_config.json: the configuration used for training
  • eval_config.json: the configuration used for evaluation
  • logits.txt: the model's predictions on the unlabeled data
  • eval_logits.txt: the model's prediction on the evaluation data
  • results.json: a json file containing results such as the model's final accuracy
  • predictions.jsonl: a prediction file for the evaluation set in the SuperGlue format

The final (distilled) model for each repetition $I can be found in $OUTPUT_DIR/final/p0-i$I, which contains the same files as described above.

🚨 If your GPU runs out of memory during training, you can try decreasing both the pet_per_gpu_train_batch_size and the sc_per_gpu_unlabeled_batch_size while increasing both pet_gradient_accumulation_steps and sc_gradient_accumulation_steps.

iPET Training and Evaluation

To train and evaluate an iPET model for one of the supported tasks, simply run the same command as above, but replace --method pet with --method ipet. There are various additional iPET parameters that you can modify; all of them are prefixed with --ipet_.

For each generation $G, pattern $P and iteration $I, this creates a directory $OUTPUT_DIR/g$G/p$P-i$I that is structured as for regular PET. The final (distilled) model can again be found in $OUTPUT_DIR/final/p0-i$I.

🚨 If you use iPET with zero training examples, you need to specify how many examples for each label should be chosen in the first generation and you need to change the reduction strategy to mean: --ipet_n_most_likely 100 --reduction mean.

Supervised Training and Evaluation

To train and evaluate a regular sequence classifier in a supervised fashion, simply run the same command as above, but replace --method pet with --method sequence_classifier. There are various additional parameters for the sequence classifier that you can modify; all of them are prefixed with --sc_.

Unsupervised Evaluation

To evaluate a pretrained language model with the default PET patterns and verbalizers, but without fine-tuning, remove the argument --do_train and add --no_distillation so that no final distillation is performed.

Priming

If you want to use priming, remove the argument --do_train and add the arguments --priming --no_distillation so that all training examples are used for priming and no final distillation is performed.

🚨 Remember that you may need to increase the maximum sequence length to a much larger value, e.g. --pet_max_seq_length 5000. This only works with language models that support such long sequences, e.g. XLNet. For using XLNet, you can specify --model_type xlnet --model_name_or_path xlnet-large-cased --wrapper_type plm.

💻 API Usage

Instead of using the command line interface, you can also directly use the PET API, most of which is defined in pet.modeling. By including import pet, you can access methods such as train_pet, train_ipet and train_classifier. Check out their documentation for more information.

🐶 Train your own PET

To use PET for custom tasks, you need to define two things:

  • a DataProcessor, responsible for loading training and test data. See examples/custom_task_processor.py for an example.
  • a PVP, responsible for applying patterns to inputs and mapping labels to natural language verbalizations. See examples/custom_task_pvp.py for an example.

After having implemented the DataProcessor and the PVP, you can train a PET model using the command line as described above. Below, you can find additional information on how to define the two components of a PVP, verbalizers and patterns.

Verbalizers

Verbalizers are used to map task labels to words in natural language. For example, in a binary sentiment classification task, you could map the positive label (+1) to the word good and the negative label (-1) to the word bad. Verbalizers are realized through a PVP's verbalize() method. The simplest way of defining a verbalizer is to use a dictionary:

VERBALIZER = {"+1": ["good"], "-1": ["bad"]}
    
def verbalize(self, label) -> List[str]:
    return self.VERBALIZER[label]       

Importantly, in PET's current version, verbalizers are by default restricted to single tokens in the underlying LMs vocabulary (for using more than one token, see below). Given a language model's tokenizer, you can easily check whether a word corresponds to a single token by verifying that len(tokenizer.tokenize(word)) == 1.

You can also define multiple verbalizations for a single label. For example, if you are unsure which words best represent the labels in a binary sentiment classification task, you could define your verbalizer as follows:

VERBALIZER = {"+1": ["great", "good", "wonderful", "perfect"], "-1": ["bad", "terrible", "horrible"]}

Patterns

Patterns are used to make the language model understand a given task; they must contain exactly one <MASK> token which is to be filled using the verbalizer. For binary sentiment classification based on a review's summary (<A>) and body (<B>), a suitable pattern may be <A>. <B>. Overall, it was <MASK>. Patterns are realized through a PVP's get_parts() method, which returns a pair of text sequences (where each sequence is represented by a list of strings):

def get_parts(self, example: InputExample):
    return [example.text_a, '.', example.text_b, '.'], ['Overall, it was ', self.mask]

If you do not want to use a pair of sequences, you can simply leave the second sequence empty:

def get_parts(self, example: InputExample):
    return [example.text_a, '.', example.text_b, '. Overall, it was ', self.mask], []

If you want to define several patterns, simply use the PVPs pattern_id attribute:

def get_parts(self, example: InputExample):
    if self.pattern_id == 1:
        return [example.text_a, '.', example.text_b, '.'], ['Overall, it was ', self.mask]
    elif self.pattern_id == 2:
        return ['It was just ', self.mask, '!', example.text_a, '.', example.text_b, '.'], []

When training the model using the command line, specify all patterns to be used (e.g., --pattern_ids 1 2).

Importantly, if a sequence is longer than the specified maximum sequence length of the underlying LM, PET must know which parts of the input can be shortened and which ones cannot (for example, the mask token must always be there). Therefore, PVP provides a shortenable() method to indicate that a piece of text can be shortened:

def get_parts(self, example: InputExample):
    text_a = self.shortenable(example.text_a)
    text_b = self.shortenable(example.text_b)
    return [text_a, '.', text_b, '. Overall, it was ', self.mask], []

PET with Multiple Masks

By default, the current implementation of PET and iPET only supports a fixed set of labels that is shared across all examples and verbalizers that correspond to a single token. However, for some tasks it may be necessary to use verbalizers that correspond to multiple tokens (as described here). To do so, you simply need the following two modifications:

  1. Add the following lines in your task's DataProcessor (see examples/custom_task_processor.py):

    from pet.tasks import TASK_HELPERS
    from pet.task_helpers import MultiMaskTaskHelper
    TASK_HELPERS['my_task'] = MultiMaskTaskHelper

    where 'my_task' is the name of your task.

  2. In your PVP, make sure that the get_parts() method always inserts the maximum number of mask tokens required for any verbalization. For example, if your verbalizer maps +1 to "really awesome" and -1 to "terrible" and if those are tokenized as ["really", "awe", "##some"] and ["terrible"], respectively, your get_parts() method should always return a sequence that contains exactly 3 mask tokens.

With this modification, you can now use verbalizers consisting of multiple tokens:

VERBALIZER = {"+1": ["really good"], "-1": ["just bad"]}

However, there are several limitations to consider:

  • When using a MultiMaskTaskHelper, the maximum batch size for evaluation is 1.
  • As using multiple masks requires multiple forward passes during evaluation, the time required for evaluation scales about linearly with the length of the longest verbalizer. If you require verbalizers that consist of 10 or more tokens, using a generative LM might be a better approach.
  • The MultiMaskTaskHelper class is an experimental feature that is not thoroughly tested. In particular, this feature has only been tested for PET and not for iPET. If you observe something strange, please raise an issue.

For more flexibility, you can also write a custom TaskHelper. As a starting point, you can check out the classes CopaTaskHelper, WscTaskHelper and RecordTaskHelper in pet/task_helpers.py.

📕 Citation

If you make use of the code in this repository, please cite the following papers:

@article{schick2020exploiting,
  title={Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference},
  author={Timo Schick and Hinrich Schütze},
  journal={Computing Research Repository},
  volume={arXiv:2001.07676},
  url={http://arxiv.org/abs/2001.07676},
  year={2020}
}

@article{schick2020small,
  title={It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners},
  author={Timo Schick and Hinrich Schütze},
  journal={Computing Research Repository},
  volume={arXiv:2009.07118},
  url={http://arxiv.org/abs/2009.07118},
  year={2020}
}
Owner
Timo Schick
NLP Researcher @ SulzerGmbH , PhD Student @ CIS, LMU Munich
Timo Schick
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Wrapper to display a script output or a text file content on the desktop in sway or other wlroots-based compositors

nwg-wrapper This program is a part of the nwg-shell project. This program is a GTK3-based wrapper to display a script output, or a text file content o

Piotr Miller 94 Dec 27, 2022
TweebankNLP - Pre-trained Tweet NLP Pipeline (NER, tokenization, lemmatization, POS tagging, dependency parsing) + Models + Tweebank-NER

TweebankNLP This repo contains the new Tweebank-NER dataset and off-the-shelf Twitter-Stanza pipeline for state-of-the-art Tweet NLP, as described in

Laboratory for Social Machines 84 Dec 20, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022