Direct design of biquad filter cascades with deep learning by sampling random polynomials.

Related tags

Deep LearningIIRNet
Overview

IIRNet

Direct design of biquad filter cascades with deep learning by sampling random polynomials.

License Open In Colab arXiv

Usage

git clone https://github.com/csteinmetz1/IIRNet.git
pip install .

Filter design

Start designing filters with just a few lines of code. In this example (demos/basic.py ) we create a 32nd order IIR filter to match an arbitrary response that we define over a few points. Internally, this specification will be interpolated to 512 points.

import torch
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
from iirnet.designer import Designer

# first load IIRNet with pre-trained weights
designer = Designer()

n = 32  # Desired filter order (4, 8, 16, 32, 64)
m = [0, -3, 0, 12, 0, -6, 0]  # Magnitude response specification
mode = "linear"  # interpolation mode for specification
output = "sos"  # Output type ("sos", or "ba")

# now call the designer with parameters
sos = designer(n, m, mode=mode, output=output)

# measure and plot the response
w, h = scipy.signal.sosfreqz(sos.numpy(), fs=2)

# interpolate the target for plotting
m_int = torch.tensor(m).view(1, 1, -1).float()
m_int = torch.nn.functional.interpolate(m_int, 512, mode=mode)

fig, ax = plt.subplots(figsize=(6, 3))
plt.plot(w, 20 * np.log10(np.abs(h)), label="Estimation")
plt.plot(w, m_int.view(-1), label="Specification")
# .... more plotting ....

See demos/basic.py for the full script.

Training

We provide a set of shell scripts that will launch training jobs that reproduce the experiments from the paper in configs/. These should be launched from the top level after installing.

./configs/train_hidden_dim.sh
./configs/filter_method.sh
./configs/filter_order.sh

Evaluation

Running the evaluation will require both the pre-trained models (or models you trained yourself) along with the HRTF and Guitar cabinet datasets. These datasets can be downloaded as follows:

First, change to the data directory and then run the download script.

cd data
./dl.sh

Note, you may need to install 7z if you don't already have it. brew install p7zip on macOS

Next download the pre-trained checkpoints if you haven't already.

mkdir logs
cd logs 
wget https://zenodo.org/record/5550275/files/filter_method.zip
wget https://zenodo.org/record/5550275/files/filter_order.zip
wget https://zenodo.org/record/5550275/files/hidden_dim.zip

unzip filter_method.zip
unzip filter_order.zip
unzip hidden_dim.zip

rm filter_method.zip
rm filter_order.zip
rm hidden_dim.zip

Now you can run the evaluation on checkpoints from the three different experiments as follows.

python eval.py logs/filter_method --yw --sgd --guitar_cab --hrtf --filter_order 16
python eval.py logs/hidden_dim --yw --sgd --guitar_cab --hrtf --filter_order 16

For the filter order experiment we need to run the eval script across all models for every order.

python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 4
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 8
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 16
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 32
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 64

Note: Requires PyTorch >=1.8

Filter methods

ID Sampling method Name
(A) Normal coefficients normal_poly
(B) Normal biquads normal_biquad
(C) Uniform disk uniform_disk
(D) Uniform magnitude disk uniform_mag_disk
(E) Characteristic char_poly
(F) Uniform parametric uniform_parametric

Citation

 @article{colonel2021iirnet,
    title={Direct design of biquad filter cascades with deep learning by sampling random polynomials},
    author={Colonel, Joseph and Steinmetz, Christian J. and Michelen, Marcus and Reiss, Joshua D.},
    booktitle={arXiv:2110.03691},
    year={2021}}
Owner
Christian J. Steinmetz
Building tools for musicians and audio engineers (often with machine learning). PhD Student at Queen Mary University of London.
Christian J. Steinmetz
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022