[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Overview

Grounded Situation Recognition with Transformers

Paper | Model Checkpoint

  • This is the official PyTorch implementation of Grounded Situation Recognition with Transformers (BMVC 2021).
  • GSRTR (Grounded Situation Recognition TRansformer) achieves state of the art in all evaluation metrics on the SWiG benchmark.
  • This repository contains instructions, code and model checkpoint.

Overview

Grounded Situation Recognition (GSR) is the task that not only classifies a salient action (verb), but also predicts entities (nouns) associated with semantic roles and their locations in the given image. Inspired by the remarkable success of Transformers in vision tasks, we propose a GSR model based on a Transformer encoder-decoder architecture. The attention mechanism of our model enables accurate verb classification by capturing high-level semantic feature of an image effectively, and allows the model to flexibly deal with the complicated and image-dependent relations between entities for improved noun classification and localization. Our model is the first Transformer architecture for GSR, and achieves the state of the art in every evaluation metric on the SWiG benchmark.

model

GSRTR mainly consists of two components: Transformer Encoder for verb prediction, and Transformer Decoder for grounded noun prediction. For details, please see Grounded Situation Recognition with Transformers by Junhyeong Cho, Youngseok Yoon, Hyeonjun Lee and Suha Kwak.

Environment Setup

We provide instructions for environment setup.

# Clone this repository and navigate into the repository
git clone https://github.com/jhcho99/gsrtr.git    
cd gsrtr                                          

# Create a conda environment, activate the environment and install PyTorch via conda
conda create --name gsrtr python=3.9              
conda activate gsrtr                             
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge 

# Install requirements via pip
pip install -r requirements.txt                   

SWiG Dataset

Annotations are given in JSON format, and annotation files are under "SWiG/SWiG_jsons/" directory. Images can be downloaded here. Please download the images and store them in "SWiG/images_512/" directory.

SWiG_Image In the SWiG dataset, each image is associated with Verb, Frame and Groundings.

A) Verb: each image is paired with a verb. In the annotation file, "verb" denotes the salient action for an image.

B) Frame: a frame denotes the set of semantic roles for a verb. For example, the frame for verb "Catching" denotes the set of semantic roles "Agent", "Caught Item", "Tool" and "Place". In the annotation file, "frames" show the set of semantic roles for a verb, and noun annotations for each role. There are three noun annotations for each role, which are given by three different annotators.

C) Groundings: each grounding is described in [x1, y1, x2, y2] format. In the annotation file, "bb" denotes groundings for roles. Note that nouns can be labeled without groundings, e.g., in the case of occluded objects. When there is no grounding for a role, [-1, -1, -1, -1] is given.

# an example of annotation for an image

"catching_175.jpg": {
    "verb": "catching",
    "height": 512, 
    "width": 910,
    "bb": {"tool": [-1, -1, -1, -1], 
           "caughtitem": [444, 169, 671, 317], 
           "place": [-1, -1, -1, -1], 
           "agent": [270, 112, 909, 389]},
    "frames": [{"tool": "n05282433", "caughtitem": "n02190166", "place": "n03991062", "agent": "n00017222"}, 
               {"tool": "n05302499", "caughtitem": "n02190166", "place": "n03990474", "agent": "n00017222"}, 
               {"tool": "n07655505", "caughtitem": "n13152742", "place": "n00017222", "agent": "n02190166"}]
    }

In imsitu_space.json file, there is additional information for verb and noun.

# an example of additional verb information

"catching": {
    "framenet": "Getting", 
    "abstract": "an AGENT catches a CAUGHTITEM with a TOOL at a PLACE", 
    "def": "capture a sought out item", 
    "order": ["agent", "caughtitem", "tool", "place"], 
    "roles": {"tool": {"framenet": "manner", "def": "The object used to do the catch action"}, 
              "caughtitem": {"framenet": "theme", "def": "The entity being caught"}, 
              "place": {"framenet": "place", "def": "The location where the catch event is happening"}, 
              "agent": {"framenet": "recipient", "def": "The entity doing the catch action"}}
    }
# an example of additional noun information

"n00017222": {
    "gloss": ["plant", "flora", "plant life"], 
    "def": "(botany) a living organism lacking the power of locomotion"
    }

Additional Details

  • All images should be under "SWiG/images_512/" directory.
  • train.json file is for train set.
  • dev.json file is for development set.
  • test.json file is for test set.

Training

To train GSRTR on a single node with 4 gpus for 40 epochs, run:

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py \
           --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
           --num_workers 4 --enc_layers 6 --dec_layers 6 --dropout 0.15 --hidden_dim 512 \
           --output_dir gsrtr

To train GSRTR on a Slurm cluster with submitit using 4 TITAN Xp gpus for 40 epochs, run:

python run_with_submitit.py --ngpus 4 --nodes 1 --job_dir gsrtr \
        --backbone resnet50 --batch_size 16 --dataset_file swig --epochs 40 \
        --num_workers 4 --enc_layers 6 --dec_layers 6 --dropout 0.15 --hidden_dim 512 \
        --partition titanxp
  • A single epoch takes about 30 minutes. 40 epoch training takes around 20 hours on a single machine with 4 TITAN Xp gpus.
  • We use AdamW optimizer with learning rate 10-4 (10-5 for backbone), weight decay 10-4 and β = (0.9, 0.999).
  • Random Color Jittering, Random Gray Scaling, Random Scaling and Random Horizontal Flipping are used for augmentation.

Inference

To run an inference on a custom image, run:

python inference.py --image_path inference/filename.jpg \
                    --saved_model gsrtr_checkpoint.pth \
                    --output_dir inference
  • Model checkpoint can be downloaded here.

Here is an example of inference result: inference_result

Acknowledgements

Our code is modified and adapted from these amazing repositories:

Contact

Junhyeong Cho ([email protected])

Citation

If you find our work useful for your research, please cite our paper:

@InProceedings{cho2021gsrtr,
    title={Grounded Situation Recognition with Transformers},
    author={Junhyeong Cho and Youngseok Yoon and Hyeonjun Lee and Suha Kwak},
    booktitle={British Machine Vision Conference (BMVC)},
    year={2021}
}

License

GSRTR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Owner
Junhyeong Cho
Student at POSTECH | Studied at Stanford, UIUC and UC Berkeley
Junhyeong Cho
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023