基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.github.io/2021/01/20/ccf-qa-2/ train_concat.py 0.7786 # 使用那个FGM对抗 train_FGM.py 0.7891 # 苏神提出的 PET train_PET.py 0.7812 预训练模型使用 nezha 使用说明: 数据放在 data下 下载预训练模型解压 模型会保存在 train中 优化方向: 1,融合🙃 bert4keras >= 0.10.0 nezha的预训练模型 链接: https://pan.baidu.com/s/1lURyXs39PYnsb4imCjVkfQ 密码: 1eqq --来自百度网盘超级会员V4的分享
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务
Overview
Comp445 project - Data Communications & Computer Networks
COMP-445 Data Communications & Computer Networks Change Python version in Conda
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang
Raptor-Multi-Tool - Raptor Multi Tool With Python
Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.
TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T
A tight inclusion function for continuous collision detection
Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can
3D mesh stylization driven by a text input in PyTorch
Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"
Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati
Object detection evaluation metrics using Python.
Object detection evaluation metrics using Python.
Asynchronous Advantage Actor-Critic in PyTorch
Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn
An LSTM for time-series classification
Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In
Global Rhythm Style Transfer Without Text Transcriptions
Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script
Contextual Attention Localization for Offline Handwritten Text Recognition
CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)
MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re
This implements one of result networks from Large-scale evolution of image classifiers
Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation
UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.
PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I
MoveNetを用いたPythonでの姿勢推定のデモ
MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)
An self sufficient AI that crawls the web to learn how to generate art from keywords
Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech