History Aware Multimodal Transformer for Vision-and-Language Navigation

Overview

History Aware Multimodal Transformer for Vision-and-Language Navigation

This repository is the official implementation of History Aware Multimodal Transformer for Vision-and-Language Navigation. Project webpage: https://cshizhe.github.io/projects/vln_hamt.html

Vision-and-language navigation (VLN) aims to build autonomous visual agents that follow instructions and navigate in real scenes. In this work, we introduce a History Aware Multimodal Transformer (HAMT) to incorporate a long-horizon history into multimodal decision making. HAMT efficiently encodes all the past panoramic observations via a hierarchical vision transformer. It, then, jointly combines text, history and current observation to predict the next action. We first train HAMT end-to-end using several proxy tasks including single-step action prediction and spatial relation prediction, and then use reinforcement learning to further improve the navigation policy. HAMT achieves new state of the art on a broad range of VLN tasks, including VLN with fine-grained instructions (R2R, RxR) high-level instructions (R2R-Last, REVERIE), dialogs (CVDN) as well as long-horizon VLN (R4R, R2R-Back).

framework

Installation

  1. Install Matterport3D simulators: follow instructions here. We use the latest version (all inputs and outputs are batched).
export PYTHONPATH=Matterport3DSimulator/build:$PYTHONPATH
  1. Install requirements:
conda create --name vlnhamt python=3.8.5
conda activate vlnhamt
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
  1. Download data from Dropbox, including processed annotations, features and pretrained models. Put the data in `datasets' directory.

  2. (Optional) If you want to train HAMT end-to-end, you should download original Matterport3D data.

Extracting features (optional)

Scripts to extract visual features are in preprocess directory:

CUDA_VISIBLE_DEVICES=0 python preprocess/precompute_img_features_vit.py \
    --model_name vit_base_patch16_224 --out_image_logits \
    --connectivity_dir datasets/R2R/connectivity \
    --scan_dir datasets/Matterport3D/v1_unzip_scans \
    --num_workers 4 \
    --output_file datasets/R2R/features/pth_vit_base_patch16_224_imagenet.hdf5

Training with proxy tasks

Stage 1: Pretrain with fixed ViT features

NODE_RANK=0
NUM_GPUS=4
CUDA_VISIBLE_DEVICES='0,1,2,3' python -m torch.distributed.launch \
    --nproc_per_node=${NUM_GPUS} --node_rank $NODE_RANK \
    pretrain_src/main_r2r.py --world_size ${NUM_GPUS} \
    --model_config pretrain_src/config/r2r_model_config.json \
    --config pretrain_src/config/pretrain_r2r.json \
    --output_dir datasets/R2R/exprs/pretrain/cmt-vitbase-6tasks

Stage 2: Train ViT in an end-to-end manner

Change the config file as `pretrain_r2r_e2e.json'.

Fine-tuning for sequential action prediction

cd finetune_src
bash scripts/run_r2r.bash
bash scripts/run_r2r_back.bash
bash scripts/run_r2r_last.bash
bash scripts/run_r4r.bash
bash scripts/run_reverie.bash
bash scripts/run_cvdn.bash

Citation

If you find this work useful, please consider citing:

@InProceedings{chen2021hamt,
author       = {Chen, Shizhe and Guhur, Pierre-Louis and Schmid, Cordelia and Laptev, Ivan},
title        = {History Aware multimodal Transformer for Vision-and-Language Navigation},
booktitle    = {NeurIPS},
year         = {2021},
}

Acknowledgement

Some of the codes are built upon pytorch-image-models, UNITER and Recurrent-VLN-BERT. Thanks them for their great works!

Owner
Shizhe Chen
Shizhe Chen
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
The projects lets you extract glossary words and their definitions from a given piece of text automatically using NLP techniques

Unsupervised technique to Glossary and Definition Extraction Code Files GPT2-DefinitionModel.ipynb - GPT-2 model for definition generation. Data_Gener

Prakhar Mishra 28 May 25, 2021
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
Segmenter - Transformer for Semantic Segmentation

Segmenter - Transformer for Semantic Segmentation

592 Dec 27, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022