History Aware Multimodal Transformer for Vision-and-Language Navigation

Overview

History Aware Multimodal Transformer for Vision-and-Language Navigation

This repository is the official implementation of History Aware Multimodal Transformer for Vision-and-Language Navigation. Project webpage: https://cshizhe.github.io/projects/vln_hamt.html

Vision-and-language navigation (VLN) aims to build autonomous visual agents that follow instructions and navigate in real scenes. In this work, we introduce a History Aware Multimodal Transformer (HAMT) to incorporate a long-horizon history into multimodal decision making. HAMT efficiently encodes all the past panoramic observations via a hierarchical vision transformer. It, then, jointly combines text, history and current observation to predict the next action. We first train HAMT end-to-end using several proxy tasks including single-step action prediction and spatial relation prediction, and then use reinforcement learning to further improve the navigation policy. HAMT achieves new state of the art on a broad range of VLN tasks, including VLN with fine-grained instructions (R2R, RxR) high-level instructions (R2R-Last, REVERIE), dialogs (CVDN) as well as long-horizon VLN (R4R, R2R-Back).

framework

Installation

  1. Install Matterport3D simulators: follow instructions here. We use the latest version (all inputs and outputs are batched).
export PYTHONPATH=Matterport3DSimulator/build:$PYTHONPATH
  1. Install requirements:
conda create --name vlnhamt python=3.8.5
conda activate vlnhamt
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
  1. Download data from Dropbox, including processed annotations, features and pretrained models. Put the data in `datasets' directory.

  2. (Optional) If you want to train HAMT end-to-end, you should download original Matterport3D data.

Extracting features (optional)

Scripts to extract visual features are in preprocess directory:

CUDA_VISIBLE_DEVICES=0 python preprocess/precompute_img_features_vit.py \
    --model_name vit_base_patch16_224 --out_image_logits \
    --connectivity_dir datasets/R2R/connectivity \
    --scan_dir datasets/Matterport3D/v1_unzip_scans \
    --num_workers 4 \
    --output_file datasets/R2R/features/pth_vit_base_patch16_224_imagenet.hdf5

Training with proxy tasks

Stage 1: Pretrain with fixed ViT features

NODE_RANK=0
NUM_GPUS=4
CUDA_VISIBLE_DEVICES='0,1,2,3' python -m torch.distributed.launch \
    --nproc_per_node=${NUM_GPUS} --node_rank $NODE_RANK \
    pretrain_src/main_r2r.py --world_size ${NUM_GPUS} \
    --model_config pretrain_src/config/r2r_model_config.json \
    --config pretrain_src/config/pretrain_r2r.json \
    --output_dir datasets/R2R/exprs/pretrain/cmt-vitbase-6tasks

Stage 2: Train ViT in an end-to-end manner

Change the config file as `pretrain_r2r_e2e.json'.

Fine-tuning for sequential action prediction

cd finetune_src
bash scripts/run_r2r.bash
bash scripts/run_r2r_back.bash
bash scripts/run_r2r_last.bash
bash scripts/run_r4r.bash
bash scripts/run_reverie.bash
bash scripts/run_cvdn.bash

Citation

If you find this work useful, please consider citing:

@InProceedings{chen2021hamt,
author       = {Chen, Shizhe and Guhur, Pierre-Louis and Schmid, Cordelia and Laptev, Ivan},
title        = {History Aware multimodal Transformer for Vision-and-Language Navigation},
booktitle    = {NeurIPS},
year         = {2021},
}

Acknowledgement

Some of the codes are built upon pytorch-image-models, UNITER and Recurrent-VLN-BERT. Thanks them for their great works!

Owner
Shizhe Chen
Shizhe Chen
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Yuqing Xie 2 Feb 17, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022