A fast and easy implementation of Transformer with PyTorch.

Overview

FasySeq

FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which can be trained efficiently and modified easily. This toolkit is based on Transformer(Vaswani et al.), and will add more seq2seq models in the future.

Dependency

PyTorch >= 1.4
NLTK

Result

...

Structure

...

To Be Updated

  • top-k and top-p sampling
  • multi-GPU inference
  • length penalty in beam search
  • ...

Preprocess

Build Vocabulary

createVocab.py

NamedArguments Description
-f/--file The files used to build the vocabulary.
Type: List
--vocab_num The maximum size of vocabulary, the excess word will be discard according to the frequency.
Type: Int Default: -1
--min_freq The minimum frequency of token in vocabulary. The word with frequency less than min_freq will be discard.
Type: Int Default: 0
--lower Whether to convert all words to lowercase
--save_path The path to save voacbulary.
Type: str

Process Data

preprocess.py

NamedArguments Description
--source The path of source file.
Type: str
[--target] The path of target file.
Type: str
--src_vocab The path of source vocabulary.
Type: str
[--tgt_vocab] The path of target vocabulary.
Type: str
--save_path The path to save the processed data.
Type: str

Train

train.py

NamedArguments Description
Model -
--share_embed Source and target share the same vocabulary and word embedding. The max position of embedding is max(max_src_position, max_tgt_position) if the model employ share embedding.
--max_src_position The maximum source position, all src-tgt pairs which source sentences' lenght are greater than max_src_position will be cut or discard. If max_src_position > max source length, it wil be set to max source length.
Type: Int Default: inf
--max_tgt_position The maximum target position, all src_tgt pairs which target sentences' length are greater than max_tgt_position will be cut or discard. If max_tgt_position > max target length, it wil be set to max target length.
Type: Int Default: inf
--position_method The method to introduce positional information.
Option: encoding/embedding
--normalize_before Leveraging before layer normalization. See Xiong et al.
Checkpoint -
--checkpoint_path The path to save checkpoint file.
Type: str Default: None
--restore_file The checkpoint file to be loaded.
Type: str Default: None
--checkpoint_num Save the nearest checkpoint_num breakpoint.
Type: Int Default: inf
Data -
--vocab Vocabulary path. If you use share embedding, the vocabulary will be loaded from this path.
Type: str Default: None
--src_vocab Source vocabulary path.
Type: str Default: None
--tgt_vocab Target vocabulary path.
Type: str Default: None
--file The training data file.
Type: str
--max_tokens The maximum tokens in each batch.
Type: Int Default: 1000
--discard_invalid_data The data which length of source or data is more than maximum position will be discard if use this option, otherwise the long sentences will be cut into max position.
Train -
--cuda_num The device's ID of GPU.
Type: List
--grad_accumulate The num of gradient accumulate.
Type: Int Default: 1
--epoch The total epoch to train.
Type: Int Default: inf
--batch_print_info The number of batch to print training information.
Type: Int Default: 1000

Inference

generator.py

NamedArguments Description
--cuda_num The device's ID of GPU.
Type: List
--file The inference data file which has been processed.
Type: str
--raw_file The raw inference data file, and will be preprocessed before generated.
Type: str
--ref_file The reference file.
Type: str
--max_length
--max_alpha
--max_add_token
Maximum generated length = min(max_length, max_alpha * max_src_len, max_add_token + max_src_token)
Type: Int Default: inf
--max_tokens The maximum tokens in each batch.
Type: Int Default: 1000
--src_vocab Source vocabulary path.
Type: str Default: None
--tgt_vocab Target vocabulary path.
Type: str Default: None
--vocab Vocabulary path. If you use share embedding, the vocabulary will be loaded from this path.
Type: str Default: None
--model_path The path of pre-trained model.
Type: str
--output_path The path of output. the result will be saved into output_path/result.txt.
Type: str
--decode_method The decode method.
Option:greedy/beam
--beam Beam size.
Type: Int Default: 5

Postpreposs

avg_param.py

The average parameter code we employed is the same as fairseq.

License

FasySeq(-py) is Apache-2.0 License. The license applies to the pre-trained models as well.

You might also like...
Fast, general, and tested differentiable structured prediction in PyTorch
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Reformer, the efficient Transformer, in Pytorch
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Google's Meena transformer chatbot implementation
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Owner
宁羽
宁羽
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 09, 2023
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉 What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
Code for the project carried out fulfilling the course requirements for Fall 2021 NLP at NYU

Introduction Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization,

Sai Himal Allu 1 Apr 25, 2022
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022