Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

Overview

0. Introduction

This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

Notes

The network topologies and the trained models used in the paper are not open-sourced. One can create synthetic topologies according to the problem formulation in the paper or modify the code for their own use case.

1. Environment config

AWS instance configurations

  • AMI image: "Deep Learning AMI (Ubuntu 16.04) Version 43.0 - ami-0774e48892bd5f116"
  • for First-stage: g4dn.4xlarge; Threads 16 in gurobi.env
  • for others (ILP, ILP-heur, Second-stage): m5zn.12xlarge; Threads 8 in gurobi.env

Step 0: download the git repo

Step 1: install Linux dependencies

sudo apt-get update
sudo apt-get install build-essential libopenmpi-dev libboost-all-dev

Step 2: install Gurobi

cd 
   
    /
./gurobi.sh
source ~/.bashrc

   

Step 3: setup && start conda environment with python3.7.7

If you use the AWS Deep Learning AMI, conda is preinstalled.

conda create --name 
   
     python=3.7.7
conda activate 
    

    
   

Step 4: install python dependencies in the conda env

cd 
   
    /spinninup
pip install -e .
pip install networkx pulp pybind11 xlrd==1.2.0

   

Step 5: compile C++ program with pybind11

cd 
   
    /source/c_solver
./compile.sh

   

2. Content

  • source
    • c_solver: C++ implementation with Gurobi APIs for ILP solver and network plan evaluator
    • planning: ILP and ILP-heur implementation
    • results: store the provided trained models and solutions, and the training log
    • rl: the implementations of Critic-Actor, RL environment and RL solver
    • simulate: python classes of flow, spof, and traffic matrix
    • topology: python classes of network topology (both optical layer and IP layer)
    • test.py: the main script used to reproduce results
  • spinningup
  • gurobi.sh
    • used to install Gurobi solver

3. Reproduce results (for SIGCOMM'21 artifact evaluation)

Notes

  • Some data points are time-consuming to get (i.e., First-stage for A-0, A-0.25, A-0.5, A-0.75 in Figure 8 and B, C, D, E in Figure 9). We provide pretrained models in /source/results/trained/ / , which will be loaded by default.
  • We recommend distributing different data points and differetnt experiments on multiple AWS instances to run simultaneously.
  • The default epoch_num for Figure 10, 11 and 12 is set to be 1024, to guarantee the convergence. The training process can be terminated manually if convergence is observed.

How to reproduce

  • cd /source
  • Figure 7: python test.py fig_7 , epoch_num can be set smaller than 10 (e.g. 2) to get results faster.
  • Figure 8: python test.py single_dp_fig8 produces one data point at a time (the default adjust_factor is 1).
    • For example, python test.py single_dp_fig8 ILP 0.0 runs ILP algorithm for A-0.
    • Pretrained models will be loaded by default if provided in source/results/trained/. To train from scratch which is NOT RECOMMENDED, run python test.py single_dp_fig8 False
  • Figure 9&13: python test.py single_dp_fig9 produces one data point at a time.
    • For example, python test.py single_dp_fig9 E NeuroPlan runs NeuroPlan (First-stage) for topology E with the pretrained model. To train from scratch which is NOT RECOMMENDED, run python test.py single_dp_fig9 E NeuroPlan False.
    • python test.py second_stage can load the solution from the first stage in and run second-stage with relax_factor= on topo . For example, python test.py second_stage D "results/ /opt_topo/***.txt" 1.5
    • we also provide our results of First-stage in results/trained/ / .txt , which can be used to run second-stage directly. For example, python test.py second_stage C "results/trained/C/C.txt" 1.5
  • Figure 10: python test.py fig_10 .
    • adjust_factor={0.0, 0.5, 1.0}, num_gnn_layer={0, 2, 4}
    • For example, python test.py fig_10 0.5 2 runs NeuroPlan with 2-layer GNNs for topology A-0.5
  • Figure 11: python test.py fig_11 .
    • adjust_factor={0.0, 0.5, 1.0}, mlp_hidden_size={64, 256, 512}
    • For example, python test.py fig_11 0.0 512 runs NeuroPlan with hidden_size=512 for topology A-0
  • Figure 12: python test.py fig_12 .
    • adjust_factor={0.0, 0.5, 1.0}, max_unit_per_step={1, 4, 16}
    • For example, python test.py fig_11 1.0 4 runs NeuroPlan with max_unit_per_step=4 for topology A-1

4. Contact

For any question, please contact hzhu at jhu dot edu.

Owner
NetX Group
Computer Systems Research Group at PKU
NetX Group
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023