Object Depth via Motion and Detection Dataset

Related tags

Deep LearningODMD
Overview

ODMD Dataset

ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with each training example consisting of a series of object detection bounding boxes, camera movement distances, and ground truth object depth. As a benchmark evaluation, we provide four ODMD validation and test sets with 21,600 examples in multiple domains, and we also convert 15,650 examples from the ODMS benchmark for detection. In our paper, we use a single ODMD-trained network with object detection or segmentation to achieve state-of-the-art results on existing driving and robotics benchmarks and estimate object depth from a camera phone, demonstrating how ODMD is a viable tool for monocular depth estimation in a variety of mobile applications.

Contact: Brent Griffin (griffb at umich dot edu)

Depth results using a camera phone. alt text

Using ODMD

Run ./demo/demo_datagen.py to generate random ODMD data to train or test your model.
Example data generation and camera configurations are provided in the ./config/ folder. demo_datagen.py has the option to save data into a static dataset for repeated use.
[native Python]

Run ./demo/demo_dataset_eval.py to evaluate your model on the ODMD validation and test sets.
demo_dataset_eval.py has an example evaluation for the BoxLS baseline and instructions for using our detection-based version of ODMS. Results are saved in the ./results/ folder.
[native Python]

Benchmark

Method Normal Perturb Camera Perturb Detect Robot All
DBox 1.73 2.45 2.54 11.17 4.47
DBoxAbs 1.11 2.05 1.75 13.29 4.55
BoxLS 0.00 4.47 21.60 21.23 11.83

Is your technique missing although it's published and the code is public? Let us know and we'll add it.

Using DBox Method

Run ./demo/demo_dataset_DBox_train.py to train your own DBox model using ODMD.
Run ./demo/demo_dataset_DBox_eval.py after training to evaluate your DBox model.
Example training and DBox model configurations are provided in the ./config/ folder. Models are saved in the ./results/model/ folder.
[native Python, has Torch dependency]

Publication

Please cite our paper if you find it useful for your research.

@inproceedings{GrCoCVPR21,
  author = {Griffin, Brent A. and Corso, Jason J.},
  booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {Depth from Camera Motion and Object Detection},
  year = {2021}
}

CVPR 2021 supplementary video: https://youtu.be/GruhbdJ2l7k

IMAGE ALT TEXT HERE

Use

This code is available for non-commercial research purposes only.

Owner
Brent Griffin
Brent Griffin
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALLĀ·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023