Object Depth via Motion and Detection Dataset

Related tags

Deep LearningODMD
Overview

ODMD Dataset

ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with each training example consisting of a series of object detection bounding boxes, camera movement distances, and ground truth object depth. As a benchmark evaluation, we provide four ODMD validation and test sets with 21,600 examples in multiple domains, and we also convert 15,650 examples from the ODMS benchmark for detection. In our paper, we use a single ODMD-trained network with object detection or segmentation to achieve state-of-the-art results on existing driving and robotics benchmarks and estimate object depth from a camera phone, demonstrating how ODMD is a viable tool for monocular depth estimation in a variety of mobile applications.

Contact: Brent Griffin (griffb at umich dot edu)

Depth results using a camera phone. alt text

Using ODMD

Run ./demo/demo_datagen.py to generate random ODMD data to train or test your model.
Example data generation and camera configurations are provided in the ./config/ folder. demo_datagen.py has the option to save data into a static dataset for repeated use.
[native Python]

Run ./demo/demo_dataset_eval.py to evaluate your model on the ODMD validation and test sets.
demo_dataset_eval.py has an example evaluation for the BoxLS baseline and instructions for using our detection-based version of ODMS. Results are saved in the ./results/ folder.
[native Python]

Benchmark

Method Normal Perturb Camera Perturb Detect Robot All
DBox 1.73 2.45 2.54 11.17 4.47
DBoxAbs 1.11 2.05 1.75 13.29 4.55
BoxLS 0.00 4.47 21.60 21.23 11.83

Is your technique missing although it's published and the code is public? Let us know and we'll add it.

Using DBox Method

Run ./demo/demo_dataset_DBox_train.py to train your own DBox model using ODMD.
Run ./demo/demo_dataset_DBox_eval.py after training to evaluate your DBox model.
Example training and DBox model configurations are provided in the ./config/ folder. Models are saved in the ./results/model/ folder.
[native Python, has Torch dependency]

Publication

Please cite our paper if you find it useful for your research.

@inproceedings{GrCoCVPR21,
  author = {Griffin, Brent A. and Corso, Jason J.},
  booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {Depth from Camera Motion and Object Detection},
  year = {2021}
}

CVPR 2021 supplementary video: https://youtu.be/GruhbdJ2l7k

IMAGE ALT TEXT HERE

Use

This code is available for non-commercial research purposes only.

Owner
Brent Griffin
Brent Griffin
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022