Object Depth via Motion and Detection Dataset

Related tags

Deep LearningODMD
Overview

ODMD Dataset

ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with each training example consisting of a series of object detection bounding boxes, camera movement distances, and ground truth object depth. As a benchmark evaluation, we provide four ODMD validation and test sets with 21,600 examples in multiple domains, and we also convert 15,650 examples from the ODMS benchmark for detection. In our paper, we use a single ODMD-trained network with object detection or segmentation to achieve state-of-the-art results on existing driving and robotics benchmarks and estimate object depth from a camera phone, demonstrating how ODMD is a viable tool for monocular depth estimation in a variety of mobile applications.

Contact: Brent Griffin (griffb at umich dot edu)

Depth results using a camera phone. alt text

Using ODMD

Run ./demo/demo_datagen.py to generate random ODMD data to train or test your model.
Example data generation and camera configurations are provided in the ./config/ folder. demo_datagen.py has the option to save data into a static dataset for repeated use.
[native Python]

Run ./demo/demo_dataset_eval.py to evaluate your model on the ODMD validation and test sets.
demo_dataset_eval.py has an example evaluation for the BoxLS baseline and instructions for using our detection-based version of ODMS. Results are saved in the ./results/ folder.
[native Python]

Benchmark

Method Normal Perturb Camera Perturb Detect Robot All
DBox 1.73 2.45 2.54 11.17 4.47
DBoxAbs 1.11 2.05 1.75 13.29 4.55
BoxLS 0.00 4.47 21.60 21.23 11.83

Is your technique missing although it's published and the code is public? Let us know and we'll add it.

Using DBox Method

Run ./demo/demo_dataset_DBox_train.py to train your own DBox model using ODMD.
Run ./demo/demo_dataset_DBox_eval.py after training to evaluate your DBox model.
Example training and DBox model configurations are provided in the ./config/ folder. Models are saved in the ./results/model/ folder.
[native Python, has Torch dependency]

Publication

Please cite our paper if you find it useful for your research.

@inproceedings{GrCoCVPR21,
  author = {Griffin, Brent A. and Corso, Jason J.},
  booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  title = {Depth from Camera Motion and Object Detection},
  year = {2021}
}

CVPR 2021 supplementary video: https://youtu.be/GruhbdJ2l7k

IMAGE ALT TEXT HERE

Use

This code is available for non-commercial research purposes only.

Owner
Brent Griffin
Brent Griffin
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022