ConvMAE: Masked Convolution Meets Masked Autoencoders

Overview

ConvMAE

ConvMAE: Masked Convolution Meets Masked Autoencoders

Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1,

1 Shanghai AI Laboratory, 2 MMLab, CUHK, 3 Sensetime Research.

This repo is the official implementation of ConvMAE: Masked Convolution Meets Masked Autoencoders. It currently concludes codes and models for the following tasks:

ImageNet Pretrain: See PRETRAIN.md.
ImageNet Finetune: See FINETUNE.md.
Object Detection: See DETECTION.md.
Semantic Segmentation: See SEGMENTATION.md.

Updates

16/May/2022

The supported codes and models for COCO object detection and instance segmentation are available.

11/May/2022

  1. Pretrained models on ImageNet-1K for ConvMAE.
  2. The supported codes and models for ImageNet-1K finetuning and linear probing are provided.

08/May/2022

The preprint version is public at arxiv.

Introduction

ConvMAE framework demonstrates that multi-scale hybrid convolution-transformer can learn more discriminative representations via the mask auto-encoding scheme.

  • We present the strong and efficient self-supervised framework ConvMAE, which is easy to implement but show outstanding performances on downstream tasks.
  • ConvMAE naturally generates hierarchical representations and exhibit promising performances on object detection and segmentation.
  • ConvMAE-Base improves the ImageNet finetuning accuracy by 1.4% compared with MAE-Base. On object detection with Mask-RCNN, ConvMAE-Base achieves 53.2 box AP and 47.1 mask AP with a 25-epoch training schedule while MAE-Base attains 50.3 box AP and 44.9 mask AP with 100 training epochs. On ADE20K with UperNet, ConvMAE-Base surpasses MAE-Base by 3.6 mIoU (48.1 vs. 51.7).

tenser

Pretrain on ImageNet-1K

The following table provides pretrained checkpoints and logs used in the paper.

ConvMAE-Base
pretrained checkpoints download
logs download

Main Results on ImageNet-1K

Models #Params(M) Supervision Encoder Ratio Pretrain Epochs FT [email protected](%) LIN [email protected](%) FT logs/weights LIN logs/weights
BEiT 88 DALLE 100% 300 83.0 37.6 - -
MAE 88 RGB 25% 1600 83.6 67.8 - -
SimMIM 88 RGB 100% 800 84.0 56.7 - -
MaskFeat 88 HOG 100% 300 83.6 N/A - -
data2vec 88 RGB 100% 800 84.2 N/A - -
ConvMAE-B 88 RGB 25% 1600 85.0 70.9 log/weight

Main Results on COCO

Mask R-CNN

Models Pretrain Pretrain Epochs Finetune Epochs #Params(M) FLOPs(T) box AP mask AP logs/weights
Swin-B IN21K w/ labels 300 36 109 0.7 51.4 45.4 -
Swin-L IN21K w/ labels 300 36 218 1.1 52.4 46.2 -
MViTv2-B IN21K w/ labels 300 36 73 0.6 53.1 47.4 -
MViTv2-L IN21K w/ labels 300 36 239 1.3 53.6 47.5 -
Benchmarking-ViT-B IN1K w/o labels 1600 100 118 0.9 50.4 44.9 -
Benchmarking-ViT-L IN1K w/o labels 1600 100 340 1.9 53.3 47.2 -
ViTDet IN1K w/o labels 1600 100 111 0.8 51.2 45.5 -
MIMDet-ViT-B IN1K w/o labels 1600 36 127 1.1 51.5 46.0 -
MIMDet-ViT-L IN1K w/o labels 1600 36 345 2.6 53.3 47.5 -
ConvMAE-B IN1K w/o lables 1600 25 104 0.9 53.2 47.1 log/weight

Main Results on ADE20K

UperNet

Models Pretrain Pretrain Epochs Finetune Iters #Params(M) FLOPs(T) mIoU logs/weights
DeiT-B IN1K w/ labels 300 16K 163 0.6 45.6 -
Swin-B IN1K w/ labels 300 16K 121 0.3 48.1 -
MoCo V3 IN1K 300 16K 163 0.6 47.3 -
DINO IN1K 400 16K 163 0.6 47.2 -
BEiT IN1K+DALLE 1600 16K 163 0.6 47.1 -
PeCo IN1K 300 16K 163 0.6 46.7 -
CAE IN1K+DALLE 800 16K 163 0.6 48.8 -
MAE IN1K 1600 16K 163 0.6 48.1 -
ConvMAE-B IN1K 1600 16K 153 0.6 51.7 soon

Main Results on Kinetics-400

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 100 87 77.8
VideoMAE-B 800 100 87 79.4
VideoMAE-B 1600 100 87 79.8
VideoMAE-B 1600 100 (w/ Repeated Aug) 87 80.7 94.7
SpatioTemporalLearner-B 800 150 (w/ Repeated Aug) 87 81.3 94.9
VideoConvMAE-B 200 100 86 80.1 94.3 Soon
VideoConvMAE-B 800 100 86 81.7 95.1 Soon
VideoConvMAE-B-MSD 800 100 86 82.7 95.5 Soon

Main Results on Something-Something V2

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 40 87 66.1
VideoMAE-B 800 40 87 69.3
VideoMAE-B 2400 40 87 70.3
VideoConvMAE-B 200 40 86 67.7 91.2 Soon
VideoConvMAE-B 800 40 86 69.9 92.4 Soon
VideoConvMAE-B-MSD 800 40 86 70.7 93.0 Soon

Getting Started

Prerequisites

  • Linux
  • Python 3.7+
  • CUDA 10.2+
  • GCC 5+

Training and evaluation

Acknowledgement

The pretraining and finetuning of our project are based on DeiT and MAE. The object detection and semantic segmentation parts are based on MIMDet and MMSegmentation respectively. Thanks for their wonderful work.

License

ConvMAE is released under the MIT License.

Citation

@article{gao2022convmae,
  title={ConvMAE: Masked Convolution Meets Masked Autoencoders},
  author={Gao, Peng and Ma, Teli and Li, Hongsheng and Dai, Jifeng and Qiao, Yu},
  journal={arXiv preprint arXiv:2205.03892},
  year={2022}
}
Owner
Alpha VL Team of Shanghai AI Lab
Alpha VL Team of Shanghai AI Lab
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Roger Labbe 13k Dec 29, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Implementation of the paper titled "Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees"

Using Sampling to Estimate and Improve Performance of Automated Scoring Systems with Guarantees Implementation of the paper titled "Using Sampling to

MIDAS, IIIT Delhi 2 Aug 29, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022