ConvMAE: Masked Convolution Meets Masked Autoencoders

Overview

ConvMAE

ConvMAE: Masked Convolution Meets Masked Autoencoders

Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1,

1 Shanghai AI Laboratory, 2 MMLab, CUHK, 3 Sensetime Research.

This repo is the official implementation of ConvMAE: Masked Convolution Meets Masked Autoencoders. It currently concludes codes and models for the following tasks:

ImageNet Pretrain: See PRETRAIN.md.
ImageNet Finetune: See FINETUNE.md.
Object Detection: See DETECTION.md.
Semantic Segmentation: See SEGMENTATION.md.

Updates

16/May/2022

The supported codes and models for COCO object detection and instance segmentation are available.

11/May/2022

  1. Pretrained models on ImageNet-1K for ConvMAE.
  2. The supported codes and models for ImageNet-1K finetuning and linear probing are provided.

08/May/2022

The preprint version is public at arxiv.

Introduction

ConvMAE framework demonstrates that multi-scale hybrid convolution-transformer can learn more discriminative representations via the mask auto-encoding scheme.

  • We present the strong and efficient self-supervised framework ConvMAE, which is easy to implement but show outstanding performances on downstream tasks.
  • ConvMAE naturally generates hierarchical representations and exhibit promising performances on object detection and segmentation.
  • ConvMAE-Base improves the ImageNet finetuning accuracy by 1.4% compared with MAE-Base. On object detection with Mask-RCNN, ConvMAE-Base achieves 53.2 box AP and 47.1 mask AP with a 25-epoch training schedule while MAE-Base attains 50.3 box AP and 44.9 mask AP with 100 training epochs. On ADE20K with UperNet, ConvMAE-Base surpasses MAE-Base by 3.6 mIoU (48.1 vs. 51.7).

tenser

Pretrain on ImageNet-1K

The following table provides pretrained checkpoints and logs used in the paper.

ConvMAE-Base
pretrained checkpoints download
logs download

Main Results on ImageNet-1K

Models #Params(M) Supervision Encoder Ratio Pretrain Epochs FT [email protected](%) LIN [email protected](%) FT logs/weights LIN logs/weights
BEiT 88 DALLE 100% 300 83.0 37.6 - -
MAE 88 RGB 25% 1600 83.6 67.8 - -
SimMIM 88 RGB 100% 800 84.0 56.7 - -
MaskFeat 88 HOG 100% 300 83.6 N/A - -
data2vec 88 RGB 100% 800 84.2 N/A - -
ConvMAE-B 88 RGB 25% 1600 85.0 70.9 log/weight

Main Results on COCO

Mask R-CNN

Models Pretrain Pretrain Epochs Finetune Epochs #Params(M) FLOPs(T) box AP mask AP logs/weights
Swin-B IN21K w/ labels 300 36 109 0.7 51.4 45.4 -
Swin-L IN21K w/ labels 300 36 218 1.1 52.4 46.2 -
MViTv2-B IN21K w/ labels 300 36 73 0.6 53.1 47.4 -
MViTv2-L IN21K w/ labels 300 36 239 1.3 53.6 47.5 -
Benchmarking-ViT-B IN1K w/o labels 1600 100 118 0.9 50.4 44.9 -
Benchmarking-ViT-L IN1K w/o labels 1600 100 340 1.9 53.3 47.2 -
ViTDet IN1K w/o labels 1600 100 111 0.8 51.2 45.5 -
MIMDet-ViT-B IN1K w/o labels 1600 36 127 1.1 51.5 46.0 -
MIMDet-ViT-L IN1K w/o labels 1600 36 345 2.6 53.3 47.5 -
ConvMAE-B IN1K w/o lables 1600 25 104 0.9 53.2 47.1 log/weight

Main Results on ADE20K

UperNet

Models Pretrain Pretrain Epochs Finetune Iters #Params(M) FLOPs(T) mIoU logs/weights
DeiT-B IN1K w/ labels 300 16K 163 0.6 45.6 -
Swin-B IN1K w/ labels 300 16K 121 0.3 48.1 -
MoCo V3 IN1K 300 16K 163 0.6 47.3 -
DINO IN1K 400 16K 163 0.6 47.2 -
BEiT IN1K+DALLE 1600 16K 163 0.6 47.1 -
PeCo IN1K 300 16K 163 0.6 46.7 -
CAE IN1K+DALLE 800 16K 163 0.6 48.8 -
MAE IN1K 1600 16K 163 0.6 48.1 -
ConvMAE-B IN1K 1600 16K 153 0.6 51.7 soon

Main Results on Kinetics-400

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 100 87 77.8
VideoMAE-B 800 100 87 79.4
VideoMAE-B 1600 100 87 79.8
VideoMAE-B 1600 100 (w/ Repeated Aug) 87 80.7 94.7
SpatioTemporalLearner-B 800 150 (w/ Repeated Aug) 87 81.3 94.9
VideoConvMAE-B 200 100 86 80.1 94.3 Soon
VideoConvMAE-B 800 100 86 81.7 95.1 Soon
VideoConvMAE-B-MSD 800 100 86 82.7 95.5 Soon

Main Results on Something-Something V2

Models Pretrain Epochs Finetune Epochs #Params(M) Top1 Top5 logs/weights
VideoMAE-B 200 40 87 66.1
VideoMAE-B 800 40 87 69.3
VideoMAE-B 2400 40 87 70.3
VideoConvMAE-B 200 40 86 67.7 91.2 Soon
VideoConvMAE-B 800 40 86 69.9 92.4 Soon
VideoConvMAE-B-MSD 800 40 86 70.7 93.0 Soon

Getting Started

Prerequisites

  • Linux
  • Python 3.7+
  • CUDA 10.2+
  • GCC 5+

Training and evaluation

Acknowledgement

The pretraining and finetuning of our project are based on DeiT and MAE. The object detection and semantic segmentation parts are based on MIMDet and MMSegmentation respectively. Thanks for their wonderful work.

License

ConvMAE is released under the MIT License.

Citation

@article{gao2022convmae,
  title={ConvMAE: Masked Convolution Meets Masked Autoencoders},
  author={Gao, Peng and Ma, Teli and Li, Hongsheng and Dai, Jifeng and Qiao, Yu},
  journal={arXiv preprint arXiv:2205.03892},
  year={2022}
}
Owner
Alpha VL Team of Shanghai AI Lab
Alpha VL Team of Shanghai AI Lab
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021