PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

Overview

PolytopeSampler

PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes. It is able to sample efficiently from sets and distributions with more than 100K dimensions.

Quick Tutorial

PolytopeSampler samples from distributions of the form exp(-f(x)), for a convex function f, subject to constraints Aineq * x <= bineq, Aeq * x = beq and lb <= x <= ub.

The function f can be specified by arrays containing its first and second derivative or function handles. Only the first derivative is required. By default, f is empty, which represents a uniform distribution. If the first derivative is a function handle, then the function and its second derivatives must also be provided.

To sample N points from a polytope P, you can call sample(P, N). The function sample will

  1. Find an initial feasible point
  2. Run constrained Hamiltonian Monte Carlo
  3. Test convergence of the sampling algorithm by computing Effective Sample Size (ESS) and terminate when ESS >= N. If the target distribution is uniform, a uniformity test will also be performed.

Extra parameters can be set up using opts. Some useful parameters include maxTime and maxStep. By default, they are set to

                        maxTime: 86400 (max sampling time in seconds)
                        maxStep: 300000 (maximum number of steps)

The output is a struct o, which stores samples generated in o.samples and a summary of the sample in o.summary. o.samples is an array of size dim x #steps.

Example

We demonstrate PolytopeSampler using a simple example, sampling uniformly from a simplex. The polytope is defined by

>> P = struct;
>> d = 10;
>> P.Aeq = ones(1, d);
>> P.beq = 1;
>> P.lb = zeros(d, 1);

The polytope has dimension d = 10 with constraint sum_i x_i = 1 and x >= 0. This is a simplex. To generate 200 samples uniformly from the polytope P, we call the function sample().

>> o = sample(P, 200);
  Time spent |  Time reamin |                  Progress | Samples |  AccProb | StepSize |  MixTime
00d:00:00:01 | 00d:00:00:00 | ######################### | 211/200 | 0.989903 | 0.200000 |     11.2
Done!

We can access the samples generated using

>> o.samples

We can print a summary of the samples:

>> o.summary

ans =

  10×7 table

                     mean        std         25%         50%         75%      n_ess      r_hat 
                   ________    ________    ________    ________    _______    ______    _______

    samples[1]     0.093187    0.091207    0.026222    0.064326    0.13375    221.51    0.99954
    samples[2]     0.092815    0.086905    0.027018    0.066017    0.13221    234.59     1.0301
    samples[3]      0.10034    0.090834    0.030968    0.075631    0.13788    216.56     1.0159
    samples[4]      0.10531    0.092285    0.035363    0.077519     0.1481    235.25     1.0062
    samples[5]      0.10437    0.087634    0.034946    0.080095     0.1533    212.54    0.99841
    samples[6]       0.1029    0.093724    0.028774    0.074354    0.15135     227.6     1.0052
    samples[7]       0.1042    0.083084    0.038431    0.081964    0.15352    231.54     1.0008
    samples[8]     0.088778    0.086902    0.025565    0.062473    0.11837    229.69     1.0469
    samples[9]      0.10627     0.09074    0.036962    0.084294    0.15125    211.64    0.99856
    samples[10]     0.10184    0.084699    0.035981    0.074923    0.14578    230.63     1.0277

n_ess shows the effective sample size of the samples generated. r_hat tests the convergence of the sampling algorithm. A value of r_hat close to 1 indicates that the algorithm has converged properly.

See demo.m for more examples, including examples of sampling from non-uniform distributions.

A simple, fast, extensible python library for data validation.

Validr A simple, fast, extensible python library for data validation. Simple and readable schema 10X faster than jsonschema, 40X faster than schematic

kk 209 Sep 19, 2022
This is a sorting visualizer made with Tkinter.

Sorting-Visualizer This is a sorting visualizer made with Tkinter. Make sure you've installed tkinter in your system to use this visualizer pip instal

Vishal Choubey 7 Jul 06, 2022
Automatically generate GitHub activity!

Commit Bot Automatically generate GitHub activity! We've all wanted to be the developer that commits every day, but that requires a lot of work. Let's

Ricky 4 Jun 07, 2022
Visualization Data Drug in thailand during 2014 to 2020

Visualization Data Drug in thailand during 2014 to 2020 Data sorce from ข้อมูลเปิดภาครัฐ สำนักงาน ป.ป.ส Inttroducing program Using tkinter module for

Narongkorn 1 Jan 05, 2022
Missing data visualization module for Python.

missingno Messy datasets? Missing values? missingno provides a small toolset of flexible and easy-to-use missing data visualizations and utilities tha

Aleksey Bilogur 3.4k Dec 29, 2022
I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things

Genuary 2022 I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things. Every day there is a new prompt for making

Joaquín Feltes 1 Jan 10, 2022
Python support for Godot 🐍🐍🐍

Godot Python, because you want Python on Godot ! The goal of this project is to provide Python language support as a scripting module for the Godot ga

Emmanuel Leblond 1.4k Jan 04, 2023
Here are my graphs for hw_02

Let's Have A Look At Some Graphs! Graph 1: State Mentions in Congressperson's Tweets on 10/01/2017 The graph below uses this data set to demonstrate h

7 Sep 02, 2022
Plot-configurations for scientific publications, purely based on matplotlib

TUEplots Plot-configurations for scientific publications, purely based on matplotlib. Usage Please have a look at the examples in the example/ directo

Nicholas Krämer 487 Jan 08, 2023
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
🐞 📊 Ladybug extension to generate 2D charts

ladybug-charts Ladybug extension to generate 2D charts. Installation pip install ladybug-charts QuickStart import ladybug_charts API Documentation Loc

Ladybug Tools 3 Dec 30, 2022
Exploratory analysis and data visualization of aircraft accidents and incidents in Brazil.

Exploring aircraft accidents in Brazil Occurrencies with aircraft in Brazil are investigated by the Center for Investigation and Prevention of Aircraf

Augusto Herrmann 5 Dec 14, 2021
A customized interface for single cell track visualisation based on pcnaDeep and napari.

pcnaDeep-napari A customized interface for single cell track visualisation based on pcnaDeep and napari. 👀 Under construction You can get test image

ChanLab 2 Nov 07, 2021
Python Data Structures for Humans™.

Schematics Python Data Structures for Humans™. About Project documentation: https://schematics.readthedocs.io/en/latest/ Schematics is a Python librar

Schematics 2.5k Dec 28, 2022
Python package to visualize and cluster partial dependence.

partial_dependence A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to

NYU Visualization Lab 25 Nov 14, 2022
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
Mattia Ficarelli 2 Mar 29, 2022
Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Curvipy - The Python package for visualizing curves and linear transformations in a super simple way

Dylan Tintenfich 55 Dec 28, 2022
View part of your screen in grayscale or simulated color vision deficiency.

monolens View part of your screen in grayscale or filtered to simulate color vision deficiency. Watch the demo on YouTube. Install with pip install mo

Hans Dembinski 31 Oct 11, 2022