PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

Overview

PolytopeSampler

PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes. It is able to sample efficiently from sets and distributions with more than 100K dimensions.

Quick Tutorial

PolytopeSampler samples from distributions of the form exp(-f(x)), for a convex function f, subject to constraints Aineq * x <= bineq, Aeq * x = beq and lb <= x <= ub.

The function f can be specified by arrays containing its first and second derivative or function handles. Only the first derivative is required. By default, f is empty, which represents a uniform distribution. If the first derivative is a function handle, then the function and its second derivatives must also be provided.

To sample N points from a polytope P, you can call sample(P, N). The function sample will

  1. Find an initial feasible point
  2. Run constrained Hamiltonian Monte Carlo
  3. Test convergence of the sampling algorithm by computing Effective Sample Size (ESS) and terminate when ESS >= N. If the target distribution is uniform, a uniformity test will also be performed.

Extra parameters can be set up using opts. Some useful parameters include maxTime and maxStep. By default, they are set to

                        maxTime: 86400 (max sampling time in seconds)
                        maxStep: 300000 (maximum number of steps)

The output is a struct o, which stores samples generated in o.samples and a summary of the sample in o.summary. o.samples is an array of size dim x #steps.

Example

We demonstrate PolytopeSampler using a simple example, sampling uniformly from a simplex. The polytope is defined by

>> P = struct;
>> d = 10;
>> P.Aeq = ones(1, d);
>> P.beq = 1;
>> P.lb = zeros(d, 1);

The polytope has dimension d = 10 with constraint sum_i x_i = 1 and x >= 0. This is a simplex. To generate 200 samples uniformly from the polytope P, we call the function sample().

>> o = sample(P, 200);
  Time spent |  Time reamin |                  Progress | Samples |  AccProb | StepSize |  MixTime
00d:00:00:01 | 00d:00:00:00 | ######################### | 211/200 | 0.989903 | 0.200000 |     11.2
Done!

We can access the samples generated using

>> o.samples

We can print a summary of the samples:

>> o.summary

ans =

  10×7 table

                     mean        std         25%         50%         75%      n_ess      r_hat 
                   ________    ________    ________    ________    _______    ______    _______

    samples[1]     0.093187    0.091207    0.026222    0.064326    0.13375    221.51    0.99954
    samples[2]     0.092815    0.086905    0.027018    0.066017    0.13221    234.59     1.0301
    samples[3]      0.10034    0.090834    0.030968    0.075631    0.13788    216.56     1.0159
    samples[4]      0.10531    0.092285    0.035363    0.077519     0.1481    235.25     1.0062
    samples[5]      0.10437    0.087634    0.034946    0.080095     0.1533    212.54    0.99841
    samples[6]       0.1029    0.093724    0.028774    0.074354    0.15135     227.6     1.0052
    samples[7]       0.1042    0.083084    0.038431    0.081964    0.15352    231.54     1.0008
    samples[8]     0.088778    0.086902    0.025565    0.062473    0.11837    229.69     1.0469
    samples[9]      0.10627     0.09074    0.036962    0.084294    0.15125    211.64    0.99856
    samples[10]     0.10184    0.084699    0.035981    0.074923    0.14578    230.63     1.0277

n_ess shows the effective sample size of the samples generated. r_hat tests the convergence of the sampling algorithm. A value of r_hat close to 1 indicates that the algorithm has converged properly.

See demo.m for more examples, including examples of sampling from non-uniform distributions.

Sentiment Analysis application created with Python and Dash, hosted at socialsentiment.net

Social Sentiment Dash Application Live-streaming sentiment analysis application created with Python and Dash, hosted at SocialSentiment.net. Dash Tuto

Harrison 456 Dec 25, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Dec 26, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
Lightweight, extensible data validation library for Python

Cerberus Cerberus is a lightweight and extensible data validation library for Python. v = Validator({'name': {'type': 'string'}}) v.validate({

eve 2.9k Dec 27, 2022
Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database

SpiderFoot Neo4j Tools Import, visualize, and analyze SpiderFoot OSINT data in Neo4j, a graph database Step 1: Installation NOTE: This installs the sf

Black Lantern Security 42 Dec 26, 2022
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022
Data visualization electromagnetic spectrum

Datenvisualisierung-Elektromagnetischen-Spektrum Anhand des Moduls matplotlib sollen die Daten des elektromagnetischen Spektrums dargestellt werden. D

Pulsar 1 Sep 01, 2022
Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain amount of time.

Smoking Simulation is an app to simulate the spreading of smokers and non-smokers, their interactions and population during certain

Bohdan Ruban 5 Nov 08, 2022
基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。

COVID-19-Epidemic-Map 基于python爬虫爬取COVID-19爆发开始至今全球疫情数据并利用Echarts对数据进行分析与多样化展示。 觉得项目还不错的话欢迎给一个star! 项目的源码可以正常运行,各个库的版本、数据库的建表语句、运行过程中遇到的坑以及解决方式在笔记.md中都

31 Dec 15, 2022
Homework 2: Matplotlib and Data Visualization

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
Custom ROI in Computer Vision Applications

EasyROI Helper library for drawing ROI in Computer Vision Applications Table of Contents EasyROI Table of Contents About The Project Tech Stack File S

43 Dec 09, 2022
Python package that generates hardware pinout diagrams as SVG images

PinOut A Python package that generates hardware pinout diagrams as SVG images. The package is designed to be quite flexible and works well for general

336 Dec 20, 2022
ScisorWiz: Differential Isoform Visualizer for Long-Read RNA Sequencing Data

ScisorWiz: Vizualizer for Differential Isoform Expression README ScisorWiz is a linux-based R-package for visualizing differential isoform expression

Alexander Stein 6 Oct 04, 2022
Python script for writing text on github contribution chart.

Github Contribution Drawer Python script for writing text on github contribution chart. Requirements Python 3.X Getting Started Create repository Put

Steven 0 May 27, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
A Python package that provides evaluation and visualization tools for the DexYCB dataset

DexYCB Toolkit DexYCB Toolkit is a Python package that provides evaluation and visualization tools for the DexYCB dataset. The dataset and results wer

NVIDIA Research Projects 107 Dec 26, 2022
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
Regress.me is an easy to use data visualization tool powered by Dash/Plotly.

Regress.me Regress.me is an easy to use data visualization tool powered by Dash/Plotly. Regress.me.-.Google.Chrome.2022-05-10.15-58-59.mp4 Get Started

Amar 14 Aug 14, 2022
Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from time series data.

ts2vg: Time series to visibility graphs The Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from t

Carlos Bergillos 26 Dec 17, 2022
A grammar of graphics for Python

plotnine Latest Release License DOI Build Status Coverage Documentation plotnine is an implementation of a grammar of graphics in Python, it is based

Hassan Kibirige 3.3k Jan 01, 2023