Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Overview

Implicit3DUnderstanding (Im3D) [Project Page]

Holistic 3D Scene Understanding from a Single Image with Implicit Representation

Cheng Zhang, Zhaopeng Cui, Yinda Zhang, Shuaicheng Liu, Bing Zeng, Marc Pollefeys

img.jpg 3dbbox.png recon.png
img.jpg 3dbbox.png recon.png
img.jpg 3dbbox.png recon.png

pipeline

Introduction

This repo contains training, testing, evaluation, visualization code of our CVPR 2021 paper. Specially, the repo contains our PyTorch implementation of the decoder of LDIF, which can be extracted and used in other projects. We are expecting to release a refactored version of our pipeline and a PyTorch implementation of the full LDIF model in the future.

Install

sudo apt install xvfb ninja-build
conda env create -f environment.yml
conda activate Im3D
python project.py build

Demo

  1. Download the pretrained checkpoint and unzip it into out/total3d/20110611514267/

  2. Change current directory to Implicit3DUnderstanding/ and run the demo, which will generate 3D detection result and rendered scene mesh to demo/output/1/

    CUDA_VISIBLE_DEVICES=0 python main.py out/total3d/20110611514267/out_config.yaml --mode demo --demo_path demo/inputs/1
    
  3. In case you want to run it off screen (for example, with SSH)

    CUDA_VISIBLE_DEVICES=0 xvfb-run -a -s "-screen 0 800x600x24" python main.py out/total3d/20110611514267/out_config.yaml --mode demo --demo_path demo/inputs/1
    
  4. If you want to run it interactively, change the last line of demo.py

    scene_box.draw3D(if_save=True, save_path = '%s/recon.png' % (save_path))
    

    to

    scene_box.draw3D(if_save=False, save_path = '%s/recon.png' % (save_path))
    

Data preparation

We follow Total3DUnderstanding to use SUN-RGBD to train our Scene Graph Convolutional Network (SGCN), and use Pix3D to train our Local Implicit Embedding Network (LIEN) with Local Deep Implicit Functions (LDIF) decoder.

Preprocess SUN-RGBD data

Please follow Total3DUnderstanding to directly download the processed train/test data.

In case you prefer processing by yourself or want to evaluate 3D detection with our code (To ultilize the evaluation code of Coop, we modified the data processing code of Total3DUnderstanding to save parameters for transforming the coordinate system from Total3D back to Coop), please follow these steps:

  1. Follow Total3DUnderstanding to download the raw data.

  2. According to issue #6 of Total3DUnderstanding, there are a few typos in json files of SUNRGBD dataset, which is mostly solved by the json loader. However, one typo still needs to be fixed by hand. Please find {"name":""propulsion"tool"} in data/sunrgbd/Dataset/SUNRGBD/kv2/kinect2data/002922_2014-06-26_15-43-16_094959634447_rgbf000089-resize/annotation2Dfinal/index.json and remove ""propulsion.

  3. Process the data by

    python -m utils.generate_data
    

Preprocess Pix3D data

We use a different data process pipeline with Total3DUnderstanding. Please follow these steps to generate the train/test data:

  1. Download the Pix3D dataset to data/pix3d/metadata

  2. Run below to generate the train/test data into 'data/pix3d/ldif'

    python utils/preprocess_pix3d4ldif.py
    

Training and Testing

We use wandb for logging and visualization. You can register a wandb account and login before training by wandb login. In case you don't need to visualize the training process, you can put WANDB_MODE=dryrun before the commands bellow.

Thanks to the well-structured code of Total3DUnderstanding, we use the same method to manage parameters of each experiment with configuration files (configs/****.yaml). We first follow Total3DUnderstanding to pretrain each individual module, then jointly finetune the full model with additional physical violation loss.

Pretraining

We use the pretrained checkpoint of Total3DUnderstanding to load weights for ODN. Please download and rename the checkpoint to out/pretrained_models/total3d/model_best.pth. Other modules can be trained then tested with the following steps:

  1. Train LEN by:

    python main.py configs/layout_estimation.yaml
    

    The pretrained checkpoint can be found at out/layout_estimation/[start_time]/model_best.pth

  2. Train LIEN + LDIF by:

    python main.py configs/ldif.yaml
    

    The pretrained checkpoint can be found at out/ldif/[start_time]/model_best.pth

    The training process is followed with a quick test without ICP and Chamfer distance evaluated. In case you want to align mesh and evaluate the Chamfer distance during testing:

    python main.py configs/ldif.yaml --mode train
    

    The generated object meshes can be found at out/ldif/[start_time]/visualization

  3. Replace the checkpoint directories of LEN and LIEN in configs/total3d_ldif_gcnn.yaml with the checkpoints trained above, then train SGCN by:

    python main.py configs/total3d_ldif_gcnn.yaml
    

    The pretrained checkpoint can be found at out/total3d/[start_time]/model_best.pth

Joint finetune

  1. Replace the checkpoint directory in configs/total3d_ldif_gcnn_joint.yaml with the one trained in the last step above, then train the full model by:

    python main.py configs/total3d_ldif_gcnn_joint.yaml
    

    The trained model can be found at out/total3d/[start_time]/model_best.pth

  2. The training process is followed with a quick test without scene mesh generated. In case you want to generate the scene mesh during testing (which will cost a day on 1080ti due to the unoptimized interface of LDIF CUDA kernel):

    python main.py configs/total3d_ldif_gcnn_joint.yaml --mode train
    

    The testing resaults can be found at out/total3d/[start_time]/visualization

Testing

  1. The training process above already include a testing process. In case you want to test LIEN+LDIF or full model by yourself:

    python main.py out/[ldif/total3d]/[start_time]/model_best.pth --mode test
    

    The results will be saved to out/total3d/[start_time]/visualization and the evaluation metrics will be logged to wandb as run summary.

  2. Evaluate 3D object detection with our modified matlab script from Coop:

    external/cooperative_scene_parsing/evaluation/detections/script_eval_detection.m
    

    Before running the script, please specify the following parameters:

    SUNRGBD_path = 'path/to/SUNRGBD';
    result_path = 'path/to/experiment/results/visualization';
    
  3. Visualize the i-th 3D scene interacively by

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i]
    

    or save the 3D detection result and rendered scene mesh by

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i] --save_path []
    

    In case you do not have a screen:

    python utils/visualize.py --result_path out/total3d/[start_time]/visualization --sequence_id [i] --save_path [] --offscreen
    

    If nothing goes wrong, you should get results like:

    camera view 3D bbox scene reconstruction

  4. Visualize the detection results from a third person view with our modified matlab script from Coop:

    external/cooperative_scene_parsing/evaluation/vis/show_result.m
    

    Before running the script, please specify the following parameters:

    SUNRGBD_path = 'path/to/SUNRGBD';
    save_root = 'path/to/save/the/detection/results';
    paths = {
        {'path/to/save/detection/results', 'path/to/experiment/results/visualization'}, ...
        {'path/to/save/gt/boundingbox/results'}
    };
    vis_pc = false; % or true, if you want to show cloud point ground truth
    views3d = {'oblique', 'top'}; % choose prefered view
    dosave = true; % or false, please place breakpoints to interactively view the results.
    

    If nothing goes wrong, you should get results like:

    oblique view 3D bbox

About the testing speed

Thanks to the simplicity of LIEN+LDIF, the pretrain takes only about 8 hours on a 1080Ti. However, although we used the CUDA kernel of LDIF to optimize the speed, the file-based interface of the kernel still bottlenecked the mesh reconstruction. This is the main reason why our method takes much more time in object and scene mesh reconstruction. If you want speed over mesh quality, please lower the parameter data.marching_cube_resolution in the configuration file.

Citation

If you find our work and code helpful, please consider cite:

@article{zhang2021holistic,
  title={Holistic 3D Scene Understanding from a Single Image with Implicit Representation},
  author={Zhang, Cheng and Cui, Zhaopeng and Zhang, Yinda and Zeng, Bing and Pollefeys, Marc and Liu, Shuaicheng},
  journal={arXiv preprint arXiv:2103.06422},
  year={2021}
}

We thank the following great works:

  • Total3DUnderstanding for their well-structured code. We construct our network based on their well-structured code.
  • Coop for their dataset. We used their processed dataset with 2D detector prediction.
  • LDIF for their novel representation method. We ported their LDIF decoder from Tensorflow to PyTorch.
  • Graph R-CNN for their scene graph design. We adopted their GCN implemention to construct our SGCN.
  • Occupancy Networks for their modified version of mesh-fusion pipeline.

If you find them helpful, please cite:

@InProceedings{Nie_2020_CVPR,
author = {Nie, Yinyu and Han, Xiaoguang and Guo, Shihui and Zheng, Yujian and Chang, Jian and Zhang, Jian Jun},
title = {Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
@inproceedings{huang2018cooperative,
  title={Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation},
  author={Huang, Siyuan and Qi, Siyuan and Xiao, Yinxue and Zhu, Yixin and Wu, Ying Nian and Zhu, Song-Chun},
  booktitle={Advances in Neural Information Processing Systems},
  pages={206--217},
  year={2018}
}	
@inproceedings{genova2020local,
    title={Local Deep Implicit Functions for 3D Shape},
    author={Genova, Kyle and Cole, Forrester and Sud, Avneesh and Sarna, Aaron and Funkhouser, Thomas},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    pages={4857--4866},
    year={2020}
}
@inproceedings{yang2018graph,
    title={Graph r-cnn for scene graph generation},
    author={Yang, Jianwei and Lu, Jiasen and Lee, Stefan and Batra, Dhruv and Parikh, Devi},
    booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
    pages={670--685},
    year={2018}
}
@inproceedings{mescheder2019occupancy,
  title={Occupancy networks: Learning 3d reconstruction in function space},
  author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4460--4470},
  year={2019}
}
Owner
Cheng Zhang
Cheng Zhang of UESTC 电子科技大学 通信学院 章程
Cheng Zhang
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022