Classifies galaxy morphology with Bayesian CNN

Related tags

Deep Learningzoobot
Overview

Zoobot

Documentation Status

Zoobot classifies galaxy morphology with deep learning. This code will let you:

  • Reproduce and improve the Galaxy Zoo DECaLS automated classifications
  • Finetune the classifier for new tasks

For example, you can train a new classifier like so:

model = define_model.get_model(
    output_dim=len(schema.label_cols),  # schema defines the questions and answers
    input_size=initial_size, 
    crop_size=int(initial_size * 0.75),
    resize_size=resize_size
)

model.compile(
    loss=losses.get_multiquestion_loss(schema.question_index_groups),
    optimizer=tf.keras.optimizers.Adam()
)

training_config.train_estimator(
    model, 
    train_config,  # parameters for how to train e.g. epochs, patience
    train_dataset,
    test_dataset
)

Install using git and pip: git clone [email protected]:mwalmsley/zoobot.git pip install -r zoobot/requirements.txt (virtual env or conda highly recommended) pip install -e zoobot The main branch is for stable-ish releases. The dev branch includes the shiniest features but may change at any time.

To get started, see the documentation.

I also include some working examples for you to copy and adapt:

Latest cool features on dev branch (June 2021):

  • Multi-GPU distributed training
  • Support for Weights and Biases (wandb)
  • Worked examples for custom representations

Contributions are welcome and will be credited in any future work.

If you use this repo for your research, please cite the paper.

Comments
  • Benchmarks

    Benchmarks

    It's important that Zoobot has proper benchmarks so that we can be confident new releases work properly for users. This PR adds those benchmarks.

    In the course of setting up the benchmarks, I have made some major changes/improvements:

    • pytorch-galaxy-datasets refactored to work for tensorflow, imports adapted
    • both tensorflow and pytorch zoobot versions use albumentations for augmentations. Old TF code removed.
    • tensorflow version bumped to 2.10 (current latest) while I'm at it
    • pytorch version now has logging for per-question loss. Loss func aggregation has new option to support this.
    • TensorFlow version has per-question logging also, but awaiting issue with Keras team to enable
    • Created minimal_example.py for TensorFlow (thanks, @katgre )
    • Support CPU-only PyTorch training
    • Refactor TF TrainingConfig to Trainer object, Lightning style, for consistency
    enhancement 
    opened by mwalmsley 3
  • on_train_batch_end is slow in TF

    on_train_batch_end is slow in TF

    Unclear what's causing this slowness. Presumably a callback I added - but none look like they should be heavy? Perhaps something wandb is doing?

    • Remove all callbacks and rerun
    • Remove wandb and rerun For each, check if slow warning continues (or if training speed changes at all)
    enhancement 
    opened by mwalmsley 3
  • add gh action to publish package to pypi

    add gh action to publish package to pypi

    Related to https://github.com/mwalmsley/zoobot/issues/18#issuecomment-1278635788

    This PR adds an auto CI release mechanism for publishing zoobot to pypi. It uses the GH action to release to pypi https://github.com/pypa/gh-action-pypi-publish

    opened by camallen 3
  • Publish latest version to PyPi?

    Publish latest version to PyPi?

    A question rather than a request. Are there any plans to publish the refactored work ?

    PyPi shows v0.0.1 is published https://pypi.org/project/zoobot/#history on 15th March 2021 but the latest code is ~v0.0.3 (tags) and the refactor seems to be working well.

    Ideally I can pull in these packages to my own env / container and then train with the latest code vs pulling in from github etc.

    opened by camallen 3
  • setup branch protection rules on 'main'

    setup branch protection rules on 'main'

    https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/managing-a-branch-protection-rule

    It may be too restrictive for your use case / dev flows but we use this for contributor PRs etc. Basically we ensure that a PR meets certain criteria in terms of our CI runs, can only merge a PR once one of the CI runs v3.7 or v3.9 tests pass.

    Feel free to close if you don't think this is useful.

    enhancement 
    opened by camallen 2
  • Deprecate TFRecords

    Deprecate TFRecords

    TFRecords are cumbersome and take up a lot of disk space. It's much simpler to learn directly from images on disk, at the cost of some I/O performance.

    This PR removes support for TFRecords in favour of images-on-disk. This will ultimately enable new TensorFlow weights trained on all of DESI (impractical with TFRecords).

    Breaking change for anyone using TFRecords (i.e. everyone using TensorFlow to train from scratch). Finetuning should not be affected.

    TODO - will require new greyscale/colour pretrained models, just for safety.

    opened by mwalmsley 2
  • feat(CI): Add proposed python CI GH Action

    feat(CI): Add proposed python CI GH Action

    This PR proposes to add a simple GH Action script that establishes a python environment, downloads the requirements and runs pytest.

    Some other things to consider might be to use conda for virtual environments and creating CI scripts for Docker as well.

    opened by SauravMaheshkar 2
  • Improve data files for docker

    Improve data files for docker

    This PR changes the docker / compose setup, specifically it

    • consolidates the docker files to cuda and tensorflow base images (no need for a python base image)
    • adds a .dockerignore entry for all data files when building the container to keep the size down
    • and provides an easy way to inject them at run time via local directory mounts in the compose file
    • finally this removes specific to my machine local directory setup for injecting unrelated data files
    opened by camallen 2
  • add wandb logging, freeze batchnorm by default

    add wandb logging, freeze batchnorm by default

    Doing some polishing on finetuning

    • Add wandb logging to the full_tree example. @camallen use this for dashboard. You will need to add import wandb, wandb.init(authkey, etc) just before when running on Azure.
    • Freeze batch norm layers by default when finetuning, with new recursive function
    • Pass additional params via config (thanks Cam)
    • Minor cleanup
    opened by mwalmsley 1
  • Add PyTorch Finetuning Capability, Examples

    Add PyTorch Finetuning Capability, Examples

    Key change is adding pytorch.training.finetune() method. Works on either classification (e.g. 0, 1) data or count (e.g. 12 said yes, 4 said no) data.

    Includes three working examples:

    • Binary classification, with tiny rings subset
    • Counts for single question, with full internal rings data
    • Counts for all questions, with GZ Cosmic Dawn schema

    Also updates various imports for the galaxy-datasets refactor, fixes prediction method to work on unlabelled data, minor QoL improvements.

    Finally, changes PyTorch dense layer initialisation to custom high-uncertainty initialisation - see efficientnet_custom.py

    cc @camallen

    opened by mwalmsley 1
  • Add v0.02 changes

    Add v0.02 changes

    Adds support (minimal working examples, a guide) for calculating new representations with a trained model.

    Also adds significant new features:

    • Distributed training with several GPUs
    • Metric logging with Weights&Biases (add your own login credentials)
    • Train on color (3-band) images, not just greyscale

    Also adds a critical bugfix (when loading images for direct predictions i.e. not via TFRecords, correctly normalise to the 0-1 interval expected (without documentation) by the tf.keras.experimental.preprocessing layers).

    Also adds misc. minor fixes and documentation tweaks.

    This code was used for the morphology tools paper (to be submitted shortly).

    opened by mwalmsley 1
  • Avoid --extra-index-url via dependency_links

    Avoid --extra-index-url via dependency_links

    It should be possible to search for non-standard package repositories using just setup.py, without having the user also set --extra-index-url.

    https://setuptools.pypa.io/en/latest/deprecated/dependency_links.html

    But I couldn't get this to work on a quick try.

    enhancement help wanted 
    opened by mwalmsley 1
  • Can't import finetune while going through finetune_binary_classification.py

    Can't import finetune while going through finetune_binary_classification.py

    I tried to go through finetune_binary_classification.py, but got the error:

    ImportError: cannot import name 'finetune' from 'zoobot.pytorch.training' (/usr/local/lib/python3.8/dist-packages/zoobot/pytorch/training/init.py)

    I tried it both with kasia and dev branch, went through "git clone" and "pip install" (I remembered there were some issues during Hackaton regarding that), also tried to import other features from the folder (i.e. losses) and it worked fine.

    bug 
    opened by katgre 2
  • Create a simple decision tree in minimal_example.py

    Create a simple decision tree in minimal_example.py

    Instead of using on of the complicated decision trees from decals dr5, let's create a simple decision tree with one dependency already written in the minimal_example.py.

    opened by katgre 0
Releases(v0.0.3)
  • v0.0.3(Apr 25, 2022)

    Improved documentation and refactored train API (pytorch).

    Awaiting results from several segmentation experiments ahead of public release (inc pytorch version).

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Oct 4, 2021)

  • beta(Sep 29, 2021)

    Initial release.

    This had enough documentation and code to replicate the DECaLS model and make predictions. There are a few minor missing arguments and similar typos that you might have stumbled into, because I made some last minute changes without updating the docs, but everything worked with a little stack tracing.

    Source code(tar.gz)
    Source code(zip)
Owner
Mike Walmsley
Mike Walmsley
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer is a transformer library for primarily NLP and multimodal research at Google.

Google 116 Jan 05, 2023
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022