A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Related tags

Deep LearningPNG
Overview

❇️   ❇️     Please visit our Project Page to learn more about Panoptic Narrative Grounding.    ❇️   ❇️

Panoptic Narrative Grounding

This repository provides a PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral). Panoptic Narrative Grounding is a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics, and we propose a strong baseline method to serve as stepping stone for future work. We exploit the intrinsic semantic richness in an image by including panoptic categories, and we approach visual grounding at a fine-grained level by using segmentations. In terms of ground truth, we propose an algorithm to automatically transfer Localized Narratives annotations to specific regions in the panoptic segmentations of the MS COCO dataset. The proposed baseline achieves a performance of 55.4 absolute Average Recall points. This result is a suitable foundation to push the envelope further in the development of methods for Panoptic Narrative Grounding.

Paper

Panoptic Narrative Grounding,
Cristina González1, Nicolás Ayobi1, Isabela Hernández1, José Hernández 1, Jordi Pont-Tuset2, Pablo Arbeláez1
ICCV 2021 Oral.

1 Center for Research and Formation in Artificial Intelligence (CINFONIA) , Universidad de Los Andes.
2 Google Research, Switzerland.

Installation

Requirements

  • Python
  • Numpy
  • Pytorch 1.7.1
  • Tqdm 4.56.0
  • Scipy 1.5.3

Cloning the repository

$ git clone [email protected]:BCV-Uniandes/PNG.git
$ cd PNG

Dataset Preparation

Panoptic Marrative Grounding Benchmark

  1. Download the 2017 MSCOCO Dataset from its official webpage. You will need the train and validation splits' images1 and panoptic segmentations annotations.

  2. Download the Panoptic Narrative Grounding Benchmark and pre-computed features from our project webpage with the following folders structure:

panoptic_narrative_grounding
|_ images
|  |_ train2017
|  |_ val2017
|_ features
|  |_ train2017
|  |  |_ mask_features
|  |  |_ sem_seg_features
|  |  |_ panoptic_seg_predictions
|  |_ val2017
|     |_ mask_features
|     |_ sem_seg_features
|     |_ panoptic_seg_predictions
|_ annotations
   |_ png_coco_train2017.json
   |_ png_coco_val2017.json
   |_ panoptic_segmentation
      |_ train2017
      |_ val2017

Train setup:

Modify the routes in train_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir

Test setup:

Modify the routes in test_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir TRAIN.ENABLE "False"

Pretrained model

To reproduce all our results as reported bellow, you can use our pretrained model and our source code.

Method things + stuff things stuff
Oracle 64.4 67.3 60.4
Ours 55.4 56.2 54.3
MCN - 48.2 -
Method singulars + plurals singulars plurals
Oracle 64.4 64.8 60.7
Ours 55.4 56.2 48.8

Citation

If you find Panoptic Narrative Grounding useful in your research, please use the following BibTeX entry for citation:

@inproceedings{gonzalez2021png,
  title={Panoptic Narrative Grounding},
  author={Gonz{\'a}lez, Cristina and Ayobi, Nicol{'\a}s and Hern{\'a}ndez, Isabela and Hern{\'a}ndez, Jose and Pont-Tuset, Jordi and Arbel{\'a}ez, Pablo},
  booktitle={ICCV},
  year={2021}
}
Owner
Biomedical Computer Vision @ Uniandes
Our field of research is computer vision, the area of artificial intelligence seeking automated understanding of visual information
Biomedical Computer Vision @ Uniandes
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022