PaSST: Efficient Training of Audio Transformers with Patchout

Related tags

Deep LearningPaSST
Overview

PaSST: Efficient Training of Audio Transformers with Patchout

This is the implementation for Efficient Training of Audio Transformers with Patchout

Patchout significantly reduces the training time and GPU memory requirements to train transformers on audio spectrograms, while improving their performance.

Patchout works by dropping out some of the input patches during training. In either a unstructured way (randomly, similar to dropout), or entire time-frames or frequency bins of the extracted patches (similar to SpecAugment), which corresponds to rows/columns in step 3 of the figure below.

PaSST architecture

Setting up the experiments environment

This repo uses forked versions of sacred for configuration and logging, and pytorch-lightning for training.

For setting up Mamba is recommended and faster then conda:

conda install mamba -n base -c conda-forge

Now you can import the environment from environment.yml

mamba env create -f environment.yml

Now you have an environment named ba3l. Now install the forked versions of sacred and pl-lightning and ba3l.

# dependencies
conda activate ba3l
pip install https://github.com/kkoutini/sacred/archive/ba3l.zip
pip install https://github.com/kkoutini/pytorch-lightning/archive/ba3l.zip
pip install https://github.com/kkoutini/ba3l/archive/master.zip

In order to check the environment we used in our runs, please check the environment.yml and pip_list.txt files. Which were exported using:

environment.yml pip list > pip_list.txt ">
conda env export --no-builds | grep -v "prefix" > environment.yml
pip list > pip_list.txt

Training on Audioset

Download and prepare the dataset as explained in the audioset page The base PaSST model can be trained for example like this:

python ex_audioset.py with trainer.precision=16  models.net.arch=passt_deit_bd_p16_384 -p -m mongodb_server:27000:audioset21_balanced -c "PaSST base"

you can override any of the configuration using the sacred syntax. In order to see the available options either use omniboard or use:

 python ex_audioset.py print_config

In short:

  • All the configuration options under trainer are pytorch lightning trainer api.
  • models.net are the passt options.
  • models.mel are the preprocessing options.

For example using only unstructured patchout of 400:

python ex_audioset.py with trainer.precision=16  models.net.arch=passt_deit_bd_p16_384  models.net.u_patchout=400  models.net.s_patchout_f=0 models.net.s_patchout_t=0 -p -m mongodb_server:27000:audioset21_balanced -c "Unstructured PaSST base"

Multi-gpu training can be enabled by setting the environment variable DDP, for example with 2 gpus:

 DDP=2 python ex_audioset.py with trainer.precision=16  models.net.arch=passt_deit_bd_p16_384 -p -m mongodb_server:27000:audioset21_balanced -c "PaSST base 2 GPU"

Pre-trained models

Please check the releases page, to download pre-trained models. In general, you can get a pretrained model on Audioset using

from models.passt import get_model
model  = get_model(arch="passt_s_swa_p16_128_ap476", pretrained=True, n_classes=527, in_channels=1,
                   fstride=10, tstride=10,input_fdim=128, input_tdim=998,
                   u_patchout=0, s_patchout_t=40, s_patchout_f=4)

this will get automatically download pretrained PaSST on audioset with with mAP of 0.476. the model was trained with s_patchout_t=40, s_patchout_f=4 but you can change these to better fit your task/ computational needs.

Contact

The repo will be updated, in the mean time if you have any questions or problems feel free to open an issue on GitHub, or contact the authors directly.

Comments
  • FSD50K - validating on eval data

    FSD50K - validating on eval data

    Hi! First off, excellent work with the module. It's showing great results so far in my project. I'm having trouble, however, with an experiment. I am trying to fine-tune and train the model on subsets (3k samples for training and validating) and have created hdf5 files for that. The paths in config.basedatasets are corrected for this.

    The problem that I run into is that when I run the command: python ex_fsd50k.py evaluate_only with passt_s_swa_p16_s16_128_ap473 the program uses the evaluation data for validation. I confirmed this by making a change in fsd50k/dataset.py:

    def __len__(self):
        if self.hdf5_file == "audioset_hdf5s/mp3/FSD50K.eval_mp3.hdf":
            return 300
        return self.length
    

    which affects the number of validation batches.

    I really don't understand what is going on. Isn't the model supposed to validate on the validation data?

    Kindest regards, Ludvig.

    opened by Ludvig-Joborn 5
  • No module named 'ba3l.ingredients'

    No module named 'ba3l.ingredients'

    hi, i want to train the PaSST with Audioset But when i runed "ex_audioset.py", i faced error: "No module named 'ba3l.ingredients" I already finished setting up the environment as follow the Readme how can i fix it

    opened by kimsojeong1225 5
  • RuntimeError: The size of tensor a (2055) must match the size of tensor b (99) at non-singleton dimension 3

    RuntimeError: The size of tensor a (2055) must match the size of tensor b (99) at non-singleton dimension 3

    I use a trained model for inference and I encounter this problem when the file length is long. Traceback (most recent call last): File "", line 1, in File "/home/xingyum/anaconda3/envs/ba3l/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "/home/xingyum/models/PaSST/output/openmic2008/_None/checkpoints/src/hear21passt/hear21passt/wrapper.py", line 38, in forward x, features = self.net(specs) File "/home/xingyum/anaconda3/envs/ba3l/lib/python3.7/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl return forward_call(*input, **kwargs) File "/home/xingyum/models/PaSST/output/openmic2008/_None/checkpoints/src/hear21passt/hear21passt/models/passt.py", line 507, in forward x = self.forward_features(x) File "/home/xingyum/models/PaSST/output/openmic2008/_None/checkpoints/src/hear21passt/hear21passt/models/passt.py", line 454, in forward_features x = x + time_new_pos_embed RuntimeError: The size of tensor a (2055) must match the size of tensor b (99) at non-singleton dimension 3 image

    opened by 980202006 3
  • Changing tdim for pretrained model

    Changing tdim for pretrained model

    Thanks for sharing such great work! I want to use the pre-trained model but changing input_tdim is giving an error. My audio clips are relatively small and hence i need a smaller input_tdim. How do I do that? The error I get is due to the pretrained layer's size not equal to the current size of the model(After using input_tdim)

    opened by ranjith1604 3
  • Is it possible to install the passt with python=3.6?

    Is it possible to install the passt with python=3.6?

    Hi, thanks so much for sharing the great work! I'd like to use PaSST for downstream tasks and integrate it into existing conda environment with python=3.6 (it 's kind of painful to upgrade python from 3.6 to 3.7/3.8 due to many inconsistent packages). I know that python>=3.7 is required to install PaSST, but I'm wandering if it's possible to install it with python=3.6?

    opened by Alibabade 2
  • Inference ESC-50 fine-tuned model

    Inference ESC-50 fine-tuned model

    Hello, authors. Thank you for sharing the great work.

    I tried to fine-tuned AudioSet pretrained model passt-s-f128-p16-s10-ap.476-swa.pt on ESC-50 dataset by using ex_esc50.py. I got checkpoints saved in output/esc50/_None/checkpoints/epoch=4-step=2669.ckpt. I want to load the checkpoint and inference with audio file. I am trying to load the checkpoint model and tried to used passt_hear21 for inference but kinda lost track of the process.

    Could you please share how to inference with the saved checkpoints on audio file?

    opened by myatmyintzuthin 2
  • Could not solve for environment specs

    Could not solve for environment specs

    I clone the repo. As per the README:

    conda install mamba -n base -c conda-forge
    
    Collecting package metadata (current_repodata.json): done
    Solving environment: done
    
    ## Package Plan ##
    
      environment location: /opt/miniconda3
    
      added / updated specs:
        - mamba
    
    
    The following packages will be downloaded:
    
        package                    |            build
        ---------------------------|-----------------
        conda-22.11.1              |   py39h2804cbe_1         873 KB  conda-forge
        fmt-9.1.0                  |       hffc8910_0         171 KB  conda-forge
        krb5-1.20.1                |       h127bd45_0         1.0 MB  conda-forge
        libarchive-3.5.2           |       h69ec738_3         1.5 MB  conda-forge
        libcurl-7.87.0             |       hbe9bab4_0         304 KB  conda-forge
        libedit-3.1.20191231       |       hc8eb9b7_2          94 KB  conda-forge
        libev-4.33                 |       h642e427_1          98 KB  conda-forge
        libmamba-1.1.0             |       h1254013_2         1.0 MB  conda-forge
        libmambapy-1.1.0           |   py39h8f82c16_2         214 KB  conda-forge
        libnghttp2-1.47.0          |       h232270b_1         816 KB  conda-forge
        libsolv-0.7.23             |       hb5ab8b9_0         373 KB  conda-forge
        libssh2-1.10.0             |       hb80f160_3         218 KB  conda-forge
        libxml2-2.9.14             |       h9d8dfc2_4         656 KB  conda-forge
        lz4-c-1.9.3                |       hbdafb3b_1         147 KB  conda-forge
        lzo-2.10                   |    h642e427_1000         154 KB  conda-forge
        mamba-1.1.0                |   py39hde45b87_2          48 KB  conda-forge
        openssl-1.1.1s             |       h03a7124_1         1.5 MB  conda-forge
        pybind11-abi-4             |       hd8ed1ab_3          10 KB  conda-forge
        reproc-14.2.4              |       h1a8c8d9_0          27 KB  conda-forge
        reproc-cpp-14.2.4          |       hb7217d7_0          20 KB  conda-forge
        yaml-cpp-0.7.0             |       hb7217d7_2         133 KB  conda-forge
        ------------------------------------------------------------
                                               Total:         9.4 MB
    
    The following NEW packages will be INSTALLED:
    
      fmt                conda-forge/osx-arm64::fmt-9.1.0-hffc8910_0 
      icu                conda-forge/osx-arm64::icu-70.1-h6b3803e_0 
      krb5               conda-forge/osx-arm64::krb5-1.20.1-h127bd45_0 
      libarchive         conda-forge/osx-arm64::libarchive-3.5.2-h69ec738_3 
      libcurl            conda-forge/osx-arm64::libcurl-7.87.0-hbe9bab4_0 
      libedit            conda-forge/osx-arm64::libedit-3.1.20191231-hc8eb9b7_2 
      libev              conda-forge/osx-arm64::libev-4.33-h642e427_1 
      libiconv           conda-forge/osx-arm64::libiconv-1.17-he4db4b2_0 
      libmamba           conda-forge/osx-arm64::libmamba-1.1.0-h1254013_2 
      libmambapy         conda-forge/osx-arm64::libmambapy-1.1.0-py39h8f82c16_2 
      libnghttp2         conda-forge/osx-arm64::libnghttp2-1.47.0-h232270b_1 
      libsolv            conda-forge/osx-arm64::libsolv-0.7.23-hb5ab8b9_0 
      libssh2            conda-forge/osx-arm64::libssh2-1.10.0-hb80f160_3 
      libxml2            conda-forge/osx-arm64::libxml2-2.9.14-h9d8dfc2_4 
      lz4-c              conda-forge/osx-arm64::lz4-c-1.9.3-hbdafb3b_1 
      lzo                conda-forge/osx-arm64::lzo-2.10-h642e427_1000 
      mamba              conda-forge/osx-arm64::mamba-1.1.0-py39hde45b87_2 
      pybind11-abi       conda-forge/noarch::pybind11-abi-4-hd8ed1ab_3 
      reproc             conda-forge/osx-arm64::reproc-14.2.4-h1a8c8d9_0 
      reproc-cpp         conda-forge/osx-arm64::reproc-cpp-14.2.4-hb7217d7_0 
      yaml-cpp           conda-forge/osx-arm64::yaml-cpp-0.7.0-hb7217d7_2 
      zstd               conda-forge/osx-arm64::zstd-1.5.2-h8128057_4 
    
    The following packages will be UPDATED:
    
      ca-certificates    pkgs/main::ca-certificates-2022.10.11~ --> conda-forge::ca-certificates-2022.12.7-h4653dfc_0 
      libcxx                pkgs/main::libcxx-12.0.0-hf6beb65_1 --> conda-forge::libcxx-14.0.6-h2692d47_0 
      libzlib                                 1.2.12-ha287fd2_2 --> 1.2.13-h03a7124_4 
      openssl              pkgs/main::openssl-1.1.1s-h1a28f6b_0 --> conda-forge::openssl-1.1.1s-h03a7124_1 
      zlib                    pkgs/main::zlib-1.2.12-h5a0b063_2 --> conda-forge::zlib-1.2.13-h03a7124_4 
    
    The following packages will be SUPERSEDED by a higher-priority channel:
    
      certifi            pkgs/main/osx-arm64::certifi-2022.12.~ --> conda-forge/noarch::certifi-2022.12.7-pyhd8ed1ab_0 
      conda              pkgs/main::conda-22.11.1-py39hca03da5~ --> conda-forge::conda-22.11.1-py39h2804cbe_1 
    
    
    Proceed ([y]/n)? 
    
    
    Downloading and Extracting Packages
                                                                                                                                         
    Preparing transaction: done                                                                                                          
    Verifying transaction: done                                                                                                          
    Executing transaction: done                                                                                                          
    

    But then the next mambo command fails :\

    mamba env create -f environment.yml   
    

    with

    pkgs/r/osx-arm64                                              No change
    pkgs/main/osx-arm64                                           No change
    pkgs/main/noarch                                              No change
    pkgs/r/noarch                                                 No change
    conda-forge/osx-arm64                                4.7MB @ 351.1kB/s 13.6s
    conda-forge/noarch                                  10.7MB @ 566.8kB/s 19.2s
    
                                                                                                                                         
    Looking for: ['_libgcc_mutex==0.1=conda_forge', '_openmp_mutex==4.5=2_gnu', '_pytorch_select==0.1=cpu_0', 'appdirs==1.4.4=pyh9f0ad1d_0', 'audioread==2.1.9=py37h89c1867_4', 'blas==1.0=mkl', 'brotlipy==0.7.0=py37h5e8e339_1001', 'bzip2==1.0.8=h7f98852_4', 'c-ares==1.17.1=h7f98852_1', 'ca-certificates==2020.12.5=ha878542_0', 'cached-property==1.5.2=hd8ed1ab_1', 'cached_property==1.5.2=pyha770c72_1', 'certifi==2020.12.5=py37h89c1867_1', 'cffi==1.14.5=py37hc58025e_0', 'chardet==4.0.0=py37h89c1867_3', 'colorama==0.4.4=pyh9f0ad1d_0', 'cryptography==3.4.6=py37h5d9358c_0', 'cycler==0.10.0=py_2', 'decorator==4.4.2=py_0', 'docopt==0.6.2=py_1', 'ffmpeg==4.3.1=hca11adc_2', 'freetype==2.10.4=h0708190_1', 'gettext==0.19.8.1=h0b5b191_1005', 'gitdb==4.0.5=pyhd8ed1ab_1', 'gitpython==3.1.14=pyhd8ed1ab_0', 'gmp==6.2.1=h58526e2_0', 'gnutls==3.6.13=h85f3911_1', 'h5py==3.1.0=nompi_py37h1e651dc_100', 'hdf5==1.10.6=nompi_h6a2412b_1114', 'idna==2.10=pyh9f0ad1d_0', 'importlib-metadata==3.7.3=py37h89c1867_0', 'importlib_metadata==3.7.3=hd8ed1ab_0', 'intel-openmp==2020.2=254', 'joblib==1.0.1=pyhd8ed1ab_0', 'jpeg==9d=h36c2ea0_0', 'jsonpickle==1.4.1=pyh9f0ad1d_0', 'kiwisolver==1.3.1=py37h2527ec5_1', 'krb5==1.17.2=h926e7f8_0', 'lame==3.100=h7f98852_1001', 'lcms2==2.12=hddcbb42_0', 'ld_impl_linux-64==2.35.1=hea4e1c9_2', 'libblas==3.9.0=1_h86c2bf4_netlib', 'libcblas==3.9.0=5_h92ddd45_netlib', 'libcurl==7.75.0=hc4aaa36_0', 'libedit==3.1.20191231=he28a2e2_2', 'libev==4.33=h516909a_1', 'libffi==3.3=h58526e2_2', 'libflac==1.3.3=h9c3ff4c_1', 'libgcc-ng==9.3.0=h2828fa1_19', 'libgfortran-ng==9.3.0=hff62375_19', 'libgfortran5==9.3.0=hff62375_19', 'libgomp==9.3.0=h2828fa1_19', 'liblapack==3.9.0=5_h92ddd45_netlib', 'libllvm10==10.0.1=he513fc3_3', 'libnghttp2==1.43.0=h812cca2_0', 'libogg==1.3.4=h7f98852_1', 'libopenblas==0.3.12=pthreads_h4812303_1', 'libopus==1.3.1=h7f98852_1', 'libpng==1.6.37=h21135ba_2', 'librosa==0.8.0=pyh9f0ad1d_0', 'libsndfile==1.0.31=h9c3ff4c_1', 'libssh2==1.9.0=ha56f1ee_6', 'libstdcxx-ng==9.3.0=h6de172a_19', 'libtiff==4.2.0=hbd63e13_2', 'libvorbis==1.3.7=h9c3ff4c_0', 'libwebp-base==1.2.0=h7f98852_2', 'libzlib==1.2.11=h36c2ea0_1013', 'llvm-openmp==11.1.0=h4bd325d_1', 'llvmlite==0.36.0=py37h9d7f4d0_0', 'lz4-c==1.9.3=h9c3ff4c_1', 'matplotlib-base==3.3.4=py37h0c9df89_0', 'mkl==2020.2=256', 'mkl-service==2.3.0=py37h8f50634_2', 'munch==2.5.0=py_0', 'ncurses==6.2=h58526e2_4', 'nettle==3.6=he412f7d_0', 'ninja==1.10.2=h4bd325d_0', 'numba==0.53.0=py37h7dd73a4_1', 'numpy==1.20.1=py37haa41c4c_0', 'olefile==0.46=pyh9f0ad1d_1', 'openblas==0.3.12=pthreads_h04b7a96_1', 'openh264==2.1.1=h780b84a_0', 'openjpeg==2.4.0=hb52868f_1', 'openssl==1.1.1k=h7f98852_0', 'packaging==20.9=pyh44b312d_0', 'pandas==1.2.3=py37hdc94413_0', 'pillow==8.1.2=py37h4600e1f_1', 'pip==21.0.1=pyhd8ed1ab_0', 'pooch==1.3.0=pyhd8ed1ab_0', 'py-cpuinfo==7.0.0=pyh9f0ad1d_0', 'pycparser==2.20=pyh9f0ad1d_2', 'pyopenssl==20.0.1=pyhd8ed1ab_0', 'pyparsing==2.4.7=pyhd8ed1ab_1', 'pysocks==1.7.1=py37h89c1867_5', 'pysoundfile==0.10.3.post1=pyhd3deb0d_0', 'python==3.7.10=hffdb5ce_100_cpython', 'python-dateutil==2.8.1=py_0', 'python_abi==3.7=3_cp37m', 'pytz==2021.1=pyhd8ed1ab_0', 'readline==8.0=he28a2e2_2', 'requests==2.25.1=pyhd3deb0d_0', 'resampy==0.2.2=py_0', 'scikit-learn==0.24.1=py37h69acf81_0', 'scipy==1.6.1=py37h14a347d_0', 'setuptools==49.6.0=py37h89c1867_3', 'six==1.15.0=pyh9f0ad1d_0', 'smmap==3.0.5=pyh44b312d_0', 'sqlite==3.34.0=h74cdb3f_0', 'threadpoolctl==2.1.0=pyh5ca1d4c_0', 'tk==8.6.10=h21135ba_1', 'tornado==6.1=py37h5e8e339_1', 'typing_extensions==3.7.4.3=py_0', 'urllib3==1.26.4=pyhd8ed1ab_0', 'wrapt==1.12.1=py37h5e8e339_3', 'x264==1!161.3030=h7f98852_1', 'xz==5.2.5=h516909a_1', 'zipp==3.4.1=pyhd8ed1ab_0', 'zlib==1.2.11=h36c2ea0_1013', 'zstd==1.4.9=ha95c52a_0']
    
    
    Could not solve for environment specs
    Encountered problems while solving:
      - nothing provides requested _libgcc_mutex ==0.1 conda_forge
      - nothing provides requested _openmp_mutex ==4.5 2_gnu
      - nothing provides requested audioread ==2.1.9 py37h89c1867_4
      - nothing provides requested blas ==1.0 mkl
      - nothing provides requested brotlipy ==0.7.0 py37h5e8e339_1001
      - nothing provides requested bzip2 ==1.0.8 h7f98852_4
      - nothing provides requested c-ares ==1.17.1 h7f98852_1
      - nothing provides requested ca-certificates ==2020.12.5 ha878542_0
      - nothing provides requested certifi ==2020.12.5 py37h89c1867_1
      - nothing provides requested cffi ==1.14.5 py37hc58025e_0
      - nothing provides requested chardet ==4.0.0 py37h89c1867_3
      - nothing provides requested cryptography ==3.4.6 py37h5d9358c_0
      - nothing provides requested ffmpeg ==4.3.1 hca11adc_2
      - nothing provides requested freetype ==2.10.4 h0708190_1
      - nothing provides requested gettext ==0.19.8.1 h0b5b191_1005
      - nothing provides requested gmp ==6.2.1 h58526e2_0
      - nothing provides requested gnutls ==3.6.13 h85f3911_1
      - nothing provides requested h5py ==3.1.0 nompi_py37h1e651dc_100
      - nothing provides requested hdf5 ==1.10.6 nompi_h6a2412b_1114
      - nothing provides requested importlib-metadata ==3.7.3 py37h89c1867_0
      - nothing provides requested intel-openmp ==2020.2 254
      - nothing provides requested jpeg ==9d h36c2ea0_0
      - nothing provides requested kiwisolver ==1.3.1 py37h2527ec5_1
      - nothing provides requested krb5 ==1.17.2 h926e7f8_0
      - nothing provides requested lame ==3.100 h7f98852_1001
      - nothing provides requested lcms2 ==2.12 hddcbb42_0
      - nothing provides requested ld_impl_linux-64 ==2.35.1 hea4e1c9_2
      - nothing provides requested libblas ==3.9.0 1_h86c2bf4_netlib
      - nothing provides requested libcblas ==3.9.0 5_h92ddd45_netlib
      - nothing provides requested libcurl ==7.75.0 hc4aaa36_0
      - nothing provides requested libedit ==3.1.20191231 he28a2e2_2
      - nothing provides requested libev ==4.33 h516909a_1
      - nothing provides requested libffi ==3.3 h58526e2_2
      - nothing provides requested libflac ==1.3.3 h9c3ff4c_1
      - nothing provides requested libgcc-ng ==9.3.0 h2828fa1_19
      - nothing provides requested libgfortran-ng ==9.3.0 hff62375_19
      - nothing provides requested libgfortran5 ==9.3.0 hff62375_19
      - nothing provides requested libgomp ==9.3.0 h2828fa1_19
      - nothing provides requested liblapack ==3.9.0 5_h92ddd45_netlib
      - nothing provides requested libllvm10 ==10.0.1 he513fc3_3
      - nothing provides requested libnghttp2 ==1.43.0 h812cca2_0
      - nothing provides requested libogg ==1.3.4 h7f98852_1
      - nothing provides requested libopenblas ==0.3.12 pthreads_h4812303_1
      - nothing provides requested libopus ==1.3.1 h7f98852_1
      - nothing provides requested libpng ==1.6.37 h21135ba_2
      - nothing provides requested libsndfile ==1.0.31 h9c3ff4c_1
      - nothing provides requested libssh2 ==1.9.0 ha56f1ee_6
      - nothing provides requested libstdcxx-ng ==9.3.0 h6de172a_19
      - nothing provides requested libtiff ==4.2.0 hbd63e13_2
      - nothing provides requested libvorbis ==1.3.7 h9c3ff4c_0
      - nothing provides requested libwebp-base ==1.2.0 h7f98852_2
      - nothing provides requested libzlib ==1.2.11 h36c2ea0_1013
      - nothing provides requested llvm-openmp ==11.1.0 h4bd325d_1
      - nothing provides requested llvmlite ==0.36.0 py37h9d7f4d0_0
      - nothing provides requested lz4-c ==1.9.3 h9c3ff4c_1
      - nothing provides requested matplotlib-base ==3.3.4 py37h0c9df89_0
      - nothing provides requested mkl ==2020.2 256
      - nothing provides requested mkl-service ==2.3.0 py37h8f50634_2
      - nothing provides requested ncurses ==6.2 h58526e2_4
      - nothing provides requested nettle ==3.6 he412f7d_0
      - nothing provides requested ninja ==1.10.2 h4bd325d_0
      - nothing provides requested numba ==0.53.0 py37h7dd73a4_1
      - nothing provides requested numpy ==1.20.1 py37haa41c4c_0
      - nothing provides requested openblas ==0.3.12 pthreads_h04b7a96_1
      - nothing provides requested openh264 ==2.1.1 h780b84a_0
      - nothing provides requested openjpeg ==2.4.0 hb52868f_1
      - nothing provides requested openssl ==1.1.1k h7f98852_0
      - nothing provides requested pandas ==1.2.3 py37hdc94413_0
      - nothing provides requested pillow ==8.1.2 py37h4600e1f_1
      - nothing provides requested pysocks ==1.7.1 py37h89c1867_5
      - nothing provides requested python ==3.7.10 hffdb5ce_100_cpython
      - nothing provides requested readline ==8.0 he28a2e2_2
      - nothing provides requested scikit-learn ==0.24.1 py37h69acf81_0
      - nothing provides requested scipy ==1.6.1 py37h14a347d_0
      - nothing provides requested setuptools ==49.6.0 py37h89c1867_3
      - nothing provides requested sqlite ==3.34.0 h74cdb3f_0
      - nothing provides requested tk ==8.6.10 h21135ba_1
      - nothing provides requested tornado ==6.1 py37h5e8e339_1
      - nothing provides requested wrapt ==1.12.1 py37h5e8e339_3
      - nothing provides requested x264 ==1!161.3030 h7f98852_1
      - nothing provides requested xz ==5.2.5 h516909a_1
      - nothing provides requested zlib ==1.2.11 h36c2ea0_1013
      - nothing provides requested zstd ==1.4.9 ha95c52a_0
      - package pytz-2021.1-pyhd8ed1ab_0 requires python >=3, but none of the providers can be installed
    
    The environment can't be solved, aborting the operation
    

    This is on an OSX Apple Silicon machine

    opened by turian 1
  • ImportError: cannot import name 'F1' from 'torchmetrics' (/app/anaconda3/lib/python3.7/site-packages/torchmetrics/__init__.py)

    ImportError: cannot import name 'F1' from 'torchmetrics' (/app/anaconda3/lib/python3.7/site-packages/torchmetrics/__init__.py)

    python ex_openmic.py Traceback (most recent call last): File "ex_openmic.py", line 5, in from pytorch_lightning.callbacks import ModelCheckpoint File "/root/work_project_2021/project_music2video/PaSST/src/pytorch-lightning/pytorch_lightning/init.py", line 65, in from pytorch_lightning import metrics File "/root/work_project_2021/project_music2video/PaSST/src/pytorch-lightning/pytorch_lightning/metrics/init.py", line 16, in from pytorch_lightning.metrics.classification import ( # noqa: F401 File "/root/work_project_2021/project_music2video/PaSST/src/pytorch-lightning/pytorch_lightning/metrics/classification/init.py", line 19, in from pytorch_lightning.metrics.classification.f_beta import F1, FBeta # noqa: F401 File "/root/work_project_2021/project_music2video/PaSST/src/pytorch-lightning/pytorch_lightning/metrics/classification/f_beta.py", line 16, in from torchmetrics import F1 as _F1 ImportError: cannot import name 'F1' from 'torchmetrics' (/app/anaconda3/lib/python3.7/site-packages/torchmetrics/init.py)

    envs: Name: torch Version: 1.12.1 Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration Home-page: https://pytorch.org/ Author: PyTorch Team Author-email: [email protected] License: BSD-3 Location: /app/anaconda3/lib/python3.7/site-packages Requires: typing-extensions Required-by: torchvision, torchmetrics, torchaudio, timm, test-tube, Ba3l, pytorch-lightning

    opened by aiXia121 1
  • The loop in the diagram

    The loop in the diagram

    This is an amazing job! But I have a question: what does the loop in the diagram mean? In fact, I didn't find the loop operation in the paper and codes. Thanks!

    opened by YangYangTaoTao 1
  • Installation issues

    Installation issues

    Hi, I am trying to install and run the PaSST-S method on my own data but I get this error when I run python ex_audioset.py help

    File "ex_audioset.py", line 16, in <module>
        from helpers.mixup import my_mixup
    ModuleNotFoundError: No module named 'helpers.mixup'
    
    opened by p4vlos 1
  • mismatch version of pytorch-lighting and sarced

    mismatch version of pytorch-lighting and sarced

    Hello,when I after running the code following, 微信图片_20220426144143 and I run the code
    微信图片_20220426144415 but I encontered the issue: 微信图片_20220426144634 微信图片_20220426144639 Is this the wrong version of pytorch-lighting and sarced?When I upgrad the pytorch-lighting to the latest version,the issue is solved but the issue with sacred has not been solved. Could you please provide some help?Thank you very much!

    opened by Junglesl 15
Releases(v.0.0.7-audioset)
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
PyTorch implementation of Constrained Policy Optimization

PyTorch implementation of Constrained Policy Optimization (CPO) This repository has a simple to understand and use implementation of CPO in PyTorch. A

Sapana Chaudhary 25 Dec 08, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021