Demo code for paper "Learning optical flow from still images", CVPR 2021.

Overview

Depthstillation

Demo code for "Learning optical flow from still images", CVPR 2021.

[Project page] - [Paper] - [Supplementary]

This code is provided to replicate the qualitative results shown in the supplementary material, Sections 2-4. The code has been tested using Ubuntu 20.04 LTS, python 3.8 and gcc 9.3.0

Alt text

Reference

If you find this code useful, please cite our work:

@inproceedings{Aleotti_CVPR_2021,
  title     = {Learning optical flow from still images},
  author    = {Aleotti, Filippo and
               Poggi, Matteo and
               Mattoccia, Stefano},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
}

Contents

  1. Introduction
  2. Usage
  3. Supplementary
  4. Weights
  5. Contacts
  6. Acknowledgments

Introduction

This paper deals with the scarcity of data for training optical flow networks, highlighting the limitations of existing sources such as labeled synthetic datasets or unlabeled real videos. Specifically, we introduce a framework to generate accurate ground-truth optical flow annotations quickly and in large amounts from any readily available single real picture. Given an image, we use an off-the-shelf monocular depth estimation network to build a plausible point cloud for the observed scene. Then, we virtually move the camera in the reconstructed environment with known motion vectors and rotation angles, allowing us to synthesize both a novel view and the corresponding optical flow field connecting each pixel in the input image to the one in the new frame. When trained with our data, state-of-the-art optical flow networks achieve superior generalization to unseen real data compared to the same models trained either on annotated synthetic datasets or unlabeled videos, and better specialization if combined with synthetic images.

Usage

Install the project requirements in a new python 3 environment:

virtualenv -p python3 learning_flow_env
source learning_flow_env/bin/activate
pip install -r requirements.txt

Compile the forward_warping module, written in C (required to handle warping collisions):

cd external/forward_warping
bash compile.sh
cd ../..

You are now ready to run the depthstillation.py script:

python depthstillation.py 

By switching some parameters you can generate all the qualitatives provided in the supplementary material.

These parameters are:

  • num_motions: changes the number of virtual motions
  • segment: enables instance segmentation (for independently moving objects)
  • mask_type: mask selection. Options are H' and H
  • num_objects: sets the number of independently moving objects (one, in this example)
  • no_depth: disables monocular depth and force depth to assume a constant value
  • no_sharp: disables depth sharpening
  • change_k: uses different intrinsics K
  • change_motion: samples a different motion (ignored if num_motions greater than 1)

For instance, to simulate a different K settings, just run:

python depthstillation.py --change_k

The results are saved in dCOCO folder, organized as follows:

  • depth_color: colored depth map
  • flow: generated flow labels (in 16bit KITTI format)
  • flow_color: colored flow labels
  • H: H mask
  • H': H' mask
  • im0: real input image
  • im1: generated virtual image
  • im1_raw: generated virtual image (pre-inpainting)
  • instances_color: colored instance map (if --segment is enabled)
  • M: M mask
  • M': M' mask
  • P: P mask

We report the list of files used to depthstill dCOCO in samples/dCOCO_file_list.txt

Supplementary

We report here the list of commands to obtain, in the same order, the Figures shown in Sections 2-4 of the Supplementary Material:

  • Section 2 -- the first figure is obtained with default parameters, then we use --no_depth and --no_depth --segment respectively
  • Section 3 -- the first figure is obtained with --no_sharp, the remaining figures with default parameters or by setting --mask_type "H".
  • Section 4 -- we show three times the results obtained by default parameters, followed respectively by figures generated using --change_k, --change_motion and --segment individually.

Weights

We provide RAFT models trained in our experiments. To run them and reproduce our results, please refer to RAFT repository:

Contacts

m [dot] poggi [at] unibo [dot] it

Acknowledgments

Thanks to Clément Godard and Niantic for sharing monodepth2 code, used to simulate camera motion.

Our work is inspired by Jamie Watson et al., Learning Stereo from Single Images.

The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation

This repository contains the code accompanying the paper " FedMM: Saddle Point Optimization for Federated Adversarial Domain Adaptation" Paper link: R

20 Jun 29, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022