RLDS stands for Reinforcement Learning Datasets

Related tags

Deep Learningrlds
Overview

RLDS

RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of Sequential Decision Making including Reinforcement Learning (RL), Learning for Demonstrations, Offline RL or Imitation Learning.

This repository includes a library for manipulating RLDS compliant datasets. For other parts of the pipeline please refer to:

  • EnvLogger to create synthetic datasets
  • RLDS Creator to create datasets where a human interacts with an environment.
  • TFDS for existing RL datasets.

QuickStart & Colabs

See how to use RLDS in this tutorial.

You can find more examples in the following colabs:

Dataset Format

The dataset is retrieved as a tf.data.Dataset of Episodes where each episode contains a tf.data.Dataset of steps.

drawing

  • Episode: dictionary that contains a tf.data.Dataset of Steps, and metadata.

  • Step: dictionary that contains:

    • observation: current observation
    • action: action taken in the current observation
    • reward: return after appyling the action to the current observation
    • is_terminal: if this is a terminal step
    • is_first: if this is the first step of an episode that contains the initial state.
    • is_last: if this is the last step of an episode, that contains the last observation. When true, action, reward and discount, and other cutom fields subsequent to the observation are considered invalid.
    • discount: discount factor at this step.
    • extra metadata

    When is_terminal = True, the observation corresponds to a final state, so reward, discount and action are meaningless. Depending on the environment, the final observation may also be meaningless.

    If an episode ends in a step where is_terminal = False, it means that this episode has been truncated. In this case, depending on the environment, the action, reward and discount might be empty as well.

How to create a dataset

Although you can read datasets with the RLDS format even if they were not created with our tools (for example, by adding them to TFDS), we recommend the use of EnvLogger and RLDS Creator as they ensure that the data is stored in a lossless fashion and compatible with RLDS.

Synthetic datasets

Envlogger provides a dm_env Environment class wrapper that records interactions between a real environment and an agent.

env = envloger.EnvironmentLogger(
      environment,
      data_directory=`/tmp/mydataset`)

Besides, two callbacks can be passed to the EnviromentLogger constructor to store per-step metadata and per-episode metadata. See the EnvLogger documentation for more details.

Note that per-session metadata can be stored but is currently ignored when loading the dataset.

Note that the Envlogger follows the dm_env convention. So considering:

  • o_i: observation at step i
  • a_i: action applied to o_i
  • r_i: reward obtained when applying a_i in o_i
  • d_i: discount for reward r_i
  • m_i: metadata for step i

Data is generated and stored as:

    (o_0, _, _, _, m_0) → (o_1, a_0, r_0, d_0, m_1)  → (o_2, a_1, r_1, d_1, m_2) ⇢ ...

But loaded with RLDS as:

    (o_0,a_0, r_0, d_0, m_0) → (o_1, a_1, r_1, d_1, m_1)  → (o_2, a_2, r_2, d_2, m_2) ⇢ ...

Human datasets

If you want to collect data generated by a human interacting with an environment, check the RLDS Creator.

How to load a dataset

RL datasets can be loaded with TFDS and they are retrieved with the canonical RLDS dataset format.

See this section for instructions on how to add an RLDS dataset to TFDS.

Load with TFDS

Datasets in the TFDS catalog

These datasets can be loaded directly with:

tfds.load('dataset_name').as_dataset()['train']

This is how we load the datasets in the tutorial.

See the full documentation and the catalog in the [TFDS] site.

Datasets in your own repository

Datasets can be implemented with TFDS both inside and outside of the TFDS repository. See examples here.

How to add your dataset to TFDS

Adding a dataset to TFDS involves two steps:

  • Implement a python class that provides a dataset builder with the specs of the data (e.g., what is the shape of the observations, actions, etc.) and how to read your dataset files.

  • Run a download_and_prepare pipeline that converts the data to the TFDS intermediate format.

You can add your dataset directly to TFDS following the instructions at https://www.tensorflow.org/datasets.

  • If your data has been generated with Envlogger or the RLDS Creator, you can just use the rlds helpers in TFDS (see here an example).
  • Otherwise, make sure your generate_examples implementation provides the same structure and keys as RLDS loaders if you want your dataset to be compatible with RLDS pipelines (example).

Note that you can follow the same steps to add the data to your own repository (see more details in the TFDS documentation).

Performance best practices

As RLDS exposes RL datasets in a form of Tensorflow's tf.data, many Tensorflow's performance hints apply to RLDS as well. It is important to note, however, that RLDS datasets are very specific and not all general speed-up methods work out of the box. advices on improving performance might not result in expected outcome. To get a better understanding on how to use RLDS datasets effectively we recommend going through this colab.

Citation

If you use RLDS, please cite the RLDS paper as

@misc{ramos2021rlds,
      title={RLDS: an Ecosystem to Generate, Share and Use Datasets in Reinforcement Learning},
      author={Sabela Ramos and Sertan Girgin and Léonard Hussenot and Damien Vincent and Hanna Yakubovich and Daniel Toyama and Anita Gergely and Piotr Stanczyk and Raphael Marinier and Jeremiah Harmsen and Olivier Pietquin and Nikola Momchev},
      year={2021},
      eprint={2111.02767},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

We greatly appreciate all the support from the TF-Agents team in setting up building and testing for EnvLogger.

Disclaimer

This is not an officially supported Google product.

Owner
Google Research
Google Research
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022