Python Wrapper for Embree

Related tags

Deep Learningpyembree
Overview

pyembree

Python Wrapper for Embree

Installation

You can install pyembree (and embree) via the conda-forge package.

$ conda install -c conda-forge pyembree

Suppressing errors

Creating multiple scenes produces some harmless error messages:

ERROR CAUGHT IN EMBREE
ERROR: Invalid operation
ERROR MESSAGE: b'already initialized'

These can be suppressed with:

import logging
logging.getLogger('pyembree').disabled = True
Comments
  • Enhancement PR

    Enhancement PR

    This PR does the following things

    • Performed typo refactoring in pyx files
    • Updated to newer Embree API (2.) . Embree 3.0 is being developed...
    • Added the possibility to export all embree results when performing request
    • Added 12 new tests run from nosetests, activated them in travis
    • Run examples in travis

    One can discuss each point...

    opened by Gjacquenot 10
  • install info

    install info

    Hi,

    Thanks for making this git. Could you give some more details on how to install Pyembree?

    In Ubuntu command line, I insert sudo python setup.py install

    But there is some missing folder embree2 appartently... Or do I first have to install and compile embree itself?

    Best regards, Arne

    opened by avlonder 4
  • Fixed an attribute in trianges.pyx that prevents compilation

    Fixed an attribute in trianges.pyx that prevents compilation

    I have updated a trianges.pyx since it is using a missing attribute.

    I guess one wants RTC_GEOMETRY_STATIC instead of RTCGEOMETRY_STATIC.

    https://github.com/embree/embree/blob/90e49f243703877c7714814d6eaa5aa3422a5839/include/embree2/rtcore_geometry.h#L72

    The original error log is presented here

    D:\Embree\pyembree>python setup.py build
    Please put "# distutils: language=c++" in your .pyx or .pxd file(s)
    Compiling pyembree\trianges.pyx because it changed.
    [1/1] Cythonizing pyembree\trianges.pyx
    
    Error compiling Cython file:
    ------------------------------------------------------------
    ...
    def run_triangles():
        pass
    
    cdef unsigned int addCube(rtcs.RTCScene scene_i):
        cdef unsigned int mesh = rtcg.rtcNewTriangleMesh(scene_i,
                    rtcg.RTCGEOMETRY_STATIC, 12, 8, 1)
                       ^
    ------------------------------------------------------------
    
    pyembree\trianges.pyx:19:20: cimported module has no attribute 'RTCGEOMETRY_STATIC'
    Traceback (most recent call last):
      File "setup.py", line 11, in <module>
        include_path=include_path)
      File "C:\Program Files\Python36\lib\site-packages\Cython\Build\Dependencies.py", line 1039, in cythonize
        cythonize_one(*args)
      File "C:\Program Files\Python36\lib\site-packages\Cython\Build\Dependencies.py", line 1161, in cythonize_one
        raise CompileError(None, pyx_file)
    Cython.Compiler.Errors.CompileError: pyembree\trianges.pyx
    
    opened by Gjacquenot 3
  • Building Pyembree for use in AWS Lambda

    Building Pyembree for use in AWS Lambda

    I'd like to run Pyembree in an AWS Lambda function (via a Lambda 'Layer'), which means Embree will be located in /opt/python/embree. I'm having a bit of trouble configuring Pyembree to expect Embree in this location.

    This is what I've tried so far (cobbled together from this script and this comment) to build the environment:

    sudo amazon-linux-extras install python3.8
    sudo yum install python38-devel gcc gcc-c++
    wget https://github.com/embree/embree/releases/download/v2.17.7/embree-2.17.7.x86_64.linux.tar.gz -O /tmp/embree.tar.gz -nv
    sudo mkdir /opt/python/embree
    sudo tar -xzf /tmp/embree.tar.gz --strip-components=1 -C /opt/python/embree
    sudo pip3.8 install --no-cache-dir numpy cython
    wget https://github.com/scopatz/pyembree/releases/download/0.1.6/pyembree-0.1.6.tar.gz
    tar xf pyembree-0.1.6.tar.gz
    sed -i -e 's/embree2/\/opt\/python\/embree\/include\/embree2/g' pyembree-0.1.6/pyembree/*
    tar czf pyembree-0.1.6.tar.gz pyembree-0.1.6
    sudo pip3.8 install --global-option=build_ext --global-option="-I/opt/python/embree/include" --global-option="-L/opt/python/embree/lib" --target=/opt/python pyembree-0.1.6.tar.gz
    

    This seems to build without problem and puts Embree and Pyembree in /opt/python. If I cd into /opt/python and run Python, I can import Pyembree, but the build can't find libembree.so.2:

    Python 3.8.5 (default, Feb 18 2021, 01:24:20)
    [GCC 7.3.1 20180712 (Red Hat 7.3.1-12)] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import pyembree
    >>> from pyembree import rtcore_scene as rtcs
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ImportError: libembree.so.2: cannot open shared object file: No such file or directory
    

    Any idea what else I should try? I'm not sure if I should be replacing embree2 with opt/python/embree/include/embree2 before building the pxd/pyx files, for example. I've also tried altering setup.py to: include_path = [np.get_include(), "/opt/python/embree/include", "/opt/python/embree/lib"].

    Any pointers very welcome!

    opened by dt99jay 1
  • segfault in destructor

    segfault in destructor

    Thanks for the great package! In a trimesh issue someone posted a backtrace that looked like it was occurring in the pyembree destructor, I was wondering if you'd ever seen anything similar?

    Thread 1 "python" received signal SIGSEGV, Segmentation fault.
    0x0000000000000000 in ?? ()
    (gdb) py-bt
    Traceback (most recent call first):
    (gdb) bt
    #0  0x0000000000000000 in ?? ()
    #1  0x00007fffd8ab7c30 in embree::avx::TriangleMeshISA::~TriangleMeshISA() ()
       from /usr/local/lib/libembree.so.2
    #2  0x00007fffd850002f in embree::Scene::~Scene() ()
       from /usr/local/lib/libembree.so.2
    #3  0x00007fffd8500179 in embree::Scene::~Scene() ()
       from /usr/local/lib/libembree.so.2
    #4  0x00007fffd84c3cc5 in rtcDeleteScene () from /usr/local/lib/libembree.so.2
    #5  0x00007fffd992474c in __pyx_pf_8pyembree_12rtcore_scene_11EmbreeScene_4__dealloc__ (__pyx_v_self=0x7fffd3166490) at pyembree/rtcore_scene.cpp:3434
    #6  __pyx_pw_8pyembree_12rtcore_scene_11EmbreeScene_5__dealloc__ (
        __pyx_v_self=<pyembree.rtcore_scene.EmbreeScene at remote 0x7fffd3166490>)
        at pyembree/rtcore_scene.cpp:3419
    #7  __pyx_tp_dealloc_8pyembree_12rtcore_scene_EmbreeScene (
        o=<pyembree.rtcore_scene.EmbreeScene at remote 0x7fffd3166490>)
        at pyembree/rtcore_scene.cpp:6042
    #8  0x00000000004fc70f in PyDict_Clear () at ../Objects/dictobject.c:946
    #9  0x00000000005419b9 in dict_tp_clear.lto_priv.332 (op=<optimized out>)
        at ../Objects/dictobject.c:2152
    #10 0x000000000049ca0f in delete_garbage (
        old=0x8fa280 <generations.lto_priv+96>, collectable=0x7fffffffdb40)
        at ../Modules/gcmodule.c:820
    #11 collect.lto_priv () at ../Modules/gcmodule.c:984
    ---Type <return> to continue, or q <return> to quit---
    #12 0x00000000004f9ade in PyGC_Collect () at ../Modules/gcmodule.c:1440
    #13 0x00000000004f8d7f in Py_Finalize () at ../Python/pythonrun.c:448
    #14 0x00000000004936f2 in Py_Main () at ../Modules/main.c:665
    #15 0x00007ffff7810830 in __libc_start_main (main=0x4932b0 <main>, argc=2, 
        argv=0x7fffffffddd8, init=<optimized out>, fini=<optimized out>, 
        rtld_fini=<optimized out>, stack_end=0x7fffffffddc8)
        at ../csu/libc-start.c:291
    #16 0x00000000004931d9 in _start ()
    
    opened by mikedh 1
  • Add distance query type

    Add distance query type

    Using the output dict to get the distance to the intersection is very slow. So I added a new query type, distance, which returns just the distance to the hit.

    opened by dwastberg 1
  • multiple scenes

    multiple scenes

    Hi, thanks for the great library!

    Someone opened an issue on trimesh about the errors that get printed when you allocate multiple scenes. It's not really a functional problem as pyembree still returns the correct result, I was wondering if there was a procedure or destructor I could call to suppress these warnings?

    import numpy as np
    
    from pyembree import rtcore_scene
    from pyembree.mesh_construction import TriangleMesh
    
    if __name__ == '__main__':
         triangles_a = np.random.random((10,3,3))
         scene_a = rtcore_scene.EmbreeScene()
         mesh_a = TriangleMesh(scene_a, triangles_a)
    
         # do something to deallocate here?
    
         triangles_b = np.random.random((10,3,3))
         scene_b = rtcore_scene.EmbreeScene()
         mesh_b = TriangleMesh(scene_b, triangles_b)
    

    produces this warning:

    ERROR CAUGHT IN EMBREE
    ERROR: Invalid operation
    ERROR MESSAGE: b'/home/benthin/Projects/embree_v251/kernels/common/rtcore.cpp (157): already initialized'
    

    Best, Mike

    opened by mikedh 1
  • These ctypedefs should define function pointers

    These ctypedefs should define function pointers

    in the same way as RTCFilterFunc in rtcore_geometry.pyx. This allows me to set custom intersection functions from cython code, in the same way that you already can with filter feedback functions:

        from mesh_intersection cimport patchIntersectFunc
        cimport pyembree.rtcore_geometry_user as rtcgu
        .
        .
        .
        rtcgu.rtcSetIntersectFunction(scene, geomID, <rtcgu.RTCIntersectFunc> patchIntersectFunc)
    
    opened by atmyers 1
  • Implementing additional mesh types in mesh_construction.pyx

    Implementing additional mesh types in mesh_construction.pyx

    This pull request adds support for creating hexahedral and tetrahedral meshes. It also implements creating triangular meshes using an indices array as well as a vertices array.

    enhancement 
    opened by atmyers 1
  • Apple Silicion Support

    Apple Silicion Support

    Since Embree 3.13.0 (https://github.com/embree/embree/releases/tag/v3.13.0) Apple Silicon is supported with Embree. pyembree should be updated to support it. Also see: https://github.com/scopatz/pyembree/issues/28

    opened by trologat 0
  • Conflict found when installing pyembree in Python3.9

    Conflict found when installing pyembree in Python3.9

    Hi, when attempting to install pyembree in a Python3.9 environment I get an error due to incompatible packages (see code below). This was tested on a MacBook Pro (2017) running macOS 10.14.6. Is there any way to resolve this?

    $ conda create --name python3.9 -c conda-forge python=3.9 pyembree
    Collecting package metadata (current_repodata.json): done
    Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
    Collecting package metadata (repodata.json): done
    Solving environment: |
    Found conflicts! Looking for incompatible packages.
    This can take several minutes.  Press CTRL-C to abort.
    failed
    
    UnsatisfiableError: The following specifications were found to be incompatible with each other:
    
    Output in format: Requested package -> Available versions
    
    Package python conflicts for:
    python=3.9
    pyembree -> numpy[version='>=1.18.1,<2.0a0'] -> python[version='3.7.*|3.8.*|>=3.9,<3.10.0a0']
    pyembree -> python[version='2.7.*|3.5.*|3.6.*|>=2.7,<2.8.0a0|>=3.6,<3.7.0a0|>=3.8,<3.9.0a0|>=3.7,<3.8.0a0|>=3.5,<3.6.0a0|3.4.*']
    
    opened by ReinderVosDeWael 0
  • Dead link in the docstring of ElementMesh

    Dead link in the docstring of ElementMesh

    https://github.com/scopatz/pyembree/blob/master/pyembree/mesh_construction.pyx#L158 This link seems to be dead. I suppose that the node ordering is something like [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]] for a unit cube, right?

    [edit] same here: https://github.com/scopatz/pyembree/blob/master/pyembree/mesh_construction.h#L4

    opened by nai62 0
Releases(0.1.6)
Owner
Anthony Scopatz
Anthony Scopatz
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022