This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Overview

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Usage

To replicate our results in Section 4, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec4/ \
    --prompt-path ../data/binary_NLI_prompts.csv \
    --experiment-name sec4 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

Add --fully-train if you want to train on the entire training set in addition to few-shot settings.

To replicate Section 5, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec5/ \
    --prompt-path ../data/binary_NLI_prompts_permuted.csv \
    --experiment-name sec5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

To get a fine-tuning baseline (Figure 1):

python3 fine_tune.py \
    --save-dir ../runs/fine_tune/ \
    --epochs 5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --fully-train \
    --production \
    --seeds 1

To replicate our exact results, use --seeds 1,2,3,4,5,6,7,8, which yields starting_example_index of 550,231,974,966,1046,2350,1326,928 respectively. This is important for ensuring that all models trained under the same seed always see exactly the same training examples. See paper Section 3 for more details.

If these seeds do not generate the same starting_example_index for you (which you can check in the output CSV files), you will have to manually specify the few-shot subset of training examples. I plan to add an argparse argument for this to make it easy.

All other hyperparameters are the same as the argparse default.

Miscellaneous Notes

You might notice that the code and output files are set up to produce a fine-grained analysis of HANS (McCoy et al., 2019). We actually run all of our main experiments on HANS as well and got similar results, which we plan to write up in a future version of our paper. Meanwhile, if you’re curious, feel free to add --do-diagnosis which will report the results on HANS.

Requirements

Python 3.9.

3.7 should mostly work too. You’d have to just replace the new built-in type hints and dictionary union operators with their older equivalents.

Activate your preferred virtual envrionment and then run pip install -r requirements.txt. If you want to replicate our exact results, use

torch==1.9.0+cu111
transformers==4.9.2
datasets==1.11.0
Owner
Albert Webson
Computer science PhD by day. Philosophy MA by night. Advised by Ellie Pavlick at Brown University.
Albert Webson
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
LBK 20 Dec 02, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Predicting Tweet Sentiment Maching Learning and streamlit

Predicting-Tweet-Sentiment-Maching-Learning-and-streamlit (I prefere using Visual Studio Code ) Open the folder in VS Code Run the first cell in requi

1 Nov 20, 2021
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023