[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Overview

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised Learning for Program Repair (ICML 2021).

@InProceedings{yasunaga2021break,
  author =  {Michihiro Yasunaga and Percy Liang},
  title =   {Break-It-Fix-It: Unsupervised Learning for Program Repair},
  year =    {2021},  
  booktitle = {International Conference on Machine Learning (ICML)},  
}

Problem: Repair Task

Our approach: BIFI

0. Dependencies

Specifically, run the following commands to create a conda environment (assuming CUDA10.1):

conda create -n BIFI python=3.7.7
conda activate BIFI
pip install tqdm
pip install torch==1.4.0 torchvision==0.5.0
cd utils/fairseq
pip install -e .
pip numpy==1.20.1 editdistance

1. Download Data

Download all the data from here (data.zip) and unzip it (note: 67GB when compressed, 400GB when decompressed). This includes the GitHub-Python dataset, and all the processed training data and trained models associated with BIFI. If you only want the original GitHub-Python dataset, you can download it from here (data_minimal.zip; 1GB). After unzipping the data.zip, the resulting file structure will look like:

.
├── README.md
└── data/
    ├── orig_bad_code/       (GitHub-Python dataset's bad code)
    ├── orig_good_code/      (GitHub-Python dataset's good code)
    └── round0/
        ├── data_paired      (paired data used to train fixer in round0)
        └── model-fixer      (fixer trained in round0)
    ├── round1-BIFI-part1/
        ├── data_paired      (paired data used to train breaker in BIFI round1)
        └── model-breaker    (breaker trained in BIFI round1)
    ├── round1-BIFI-part2/
        ├── data_paired      (paired data used to train fixer in BIFI round1)
        └── model-fixer      (fixer trained in BIFI round1)
    ├── ...

About the GitHub-Python dataset

We collected 3 million Python3 snippets from GitHub. Using the critic (Python AST parser), the code snippets are split into a set of bad code (with AST parse errors) and a set of good code (with no errors). The set of bad code is located at data/orig_bad_code/orig.bad.json and good code at data/orig_good_code/orig.good.json. Each entry of orig.bad.json or orig.good.json is a dictionary consisting of

  • "code_string": raw code in the string format
  • "code_toks_joined": the raw code is split into tokens by Python tokenizer, anonymized (string/number is replaced with special tokens <STRING>/<NUMBER>), and then joined by whitespace. The tokenization was done by utils/code_utils.py: tokenize_python_code()
  • "anonymize_dict": mapping betweens raw string/number and <STRING>/<NUMBER> so that "code_string" can be recovered from "code_toks_joined". This recovery can be done by utils/code_utils.py: code_toks_to_code_string()
  • "err_obj": type of the error caught by the critic (e.g. unbalanced parentheses, indentation error). This is only applicable to orig.bad.json.

The bad code snippets in orig.bad.json are split into 5 chunks (orig.0.bad to orig.4.bad in data/orig_bad_code/), where 3,4 is heldout as the test set and 0,1,2 is made available for BIFI training. This splitting was done by scripts/split_orig_bad_and_good.py

2. Training and Evaluation

First, train the initial fixer by running commands in src/run-round0.py one by one. We then consider three training algorithms on top of it: BIFI (our proposed method), FixerOnly (BIFI without breaker), and BackTranslation (BT; our baseline). For each algorithm,

  • BIFI: run commands in src/run-BIFI.py one by one
  • FixerOnly: run commands in src/run-FixerOnly.py one by one
  • BT: run commands in src/run-BT.py one by one

Below is an illustration for the case of BIFI.

run-round0.sh

export PYTHONPATH=.

#Train initial fixer on synthetic paired data
python src/c001__train_fixer.py --round_name round0 --gpu_id 0 --max_epoch 2

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round0 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round0

run-BIFI.sh (round 1)

#Use the fixer outputs on the bad code (chunk 0,1,2) to get new paired data (Equation 6 in the paper)
python src/c006__generate_paired_data_from_fixer.py --round_name round0 --out_round_name round1-BIFI-part1

#Train breaker on the new paired data (Equation 7 in the paper)
python src/c002__train_breaker.py --round_name round1-BIFI-part1 --gpu_id 0 --max_epoch 3

#Run the trained breaker on the good code and get new paired data (Equation 8 in the paper)
python src/c004__run_breaker.py   --round_name round1-BIFI-part1 --gpu_ids '0,1,2,3,4'
python src/c007__generate_paired_data_from_breaker.py --round_name round1-BIFI-part1 --out_round_name round1-BIFI-part2

#Train fixer on the new paired data (Equation 9 in the paper)
python src/c001__train_fixer.py --round_name round1-BIFI-part2 --gpu_id 0 --max_epoch 2 --continue_from 'data/round0/model-fixer/checkpoint.pt'

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round1-BIFI-part2 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round1-BIFI-part2

This is repeated similarly for round 2.

Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022