ScaleNet: A Shallow Architecture for Scale Estimation

Related tags

Deep LearningScaleNet
Overview

ScaleNet: A Shallow Architecture for Scale Estimation

Repository for the code of ScaleNet paper:

"ScaleNet: A Shallow Architecture for Scale Estimation".
Axel Barroso-Laguna, Yurun Tian, and Krystian Mikolajczyk. arxiv 2021.

[Paper on arxiv]

Prerequisite

Python 3.7 is required for running and training ScaleNet code. Use Conda to install the dependencies:

conda create --name scalenet_env
conda activate scalenet_env 
conda install pytorch==1.2.0 -c pytorch
conda install -c conda-forge tensorboardx opencv tqdm 
conda install -c anaconda pandas 
conda install -c pytorch torchvision 

Scale estimation

run_scalenet.py can be used to estimate the scale factor between two input images. We provide as an example two images, im1.jpg and im2.jpg, within the assets/im_test folder as an example. For a quick test, please run:

python run_scalenet.py --im1_path assets/im_test/im1.jpg --im2_path assets/im_test/im2.jpg

Arguments:

  • im1_path: Path to image A.
  • im2_path: Path to image B.

It returns the scale factor A->B.

Training ScaleNet

We provide a list of Megadepth image pairs and scale factors in the assets folder. We use the undistorted images, corresponding camera intrinsics, and extrinsics preprocessed by D2-Net. You can download them directly from their main repository. If you desire to use the default configuration for training, just run the following line:

python train_ScaleNet.py --image_data_path /path/to/megadepth_d2net

There are though some important arguments to take into account when training ScaleNet.

Arguments:

  • image_data_path: Path to the undistorted Megadepth images from D2-Net.
  • save_processed_im: ScaleNet processes the images so that they are center-cropped and resized to a default resolution. We give the option to store the processed images and load them during training, which results in a much faster training. However, the size of the files can be big, and hence, we suggest storing them in a large storage disk. Default: True.
  • root_precomputed_files: Path to save the processed image pairs.

If you desire to modify ScaleNet training or architecture, look for all the arguments in the train_ScaleNet.py script.

Test ScaleNet - camera pose

In addition to the training, we also provide a template for testing ScaleNet in the camera pose task. In assets/data/test.csv, you can find the test Megadepth pairs, along with their scale change as well as their camera poses.

Run the following command to test ScaleNet + SIFT in our custom camera pose split:

python test_camera_pose.py --image_data_path /path/to/megadepth_d2net

camera_pose.py script is intended to provide a structure of our camera pose experiment. You can change either the local feature extractor or the scale estimator and obtain your camera pose results.

BibTeX

If you use this code or the provided training/testing pairs in your research, please cite our paper:

@InProceedings{Barroso-Laguna2021_scale,
    author = {Barroso-Laguna, Axel and Tian, Yurun and Mikolajczyk, Krystian},
    title = {{ScaleNet: A Shallow Architecture for Scale Estimation}},
    booktitle = {Arxiv: },
    year = {2021},
}
Owner
Axel Barroso
Computer Vision PhD Student
Axel Barroso
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022