Unbiased Learning To Rank Algorithms (ULTRA)

Overview
logo

Unbiased Learning to Rank Algorithms (ULTRA)

Python 3.6 Documentation Status Build Status codecov License follow on Twitter

🔥 News: A TensorFlow version of this package can be found in ULTRA.

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels. With the unified data processing pipeline, ULTRA supports multiple unbiased learning-to-rank algorithms, online learning-to-rank algorithms, neural learning-to-rank models, as well as different methods to use and simulate noisy labels (e.g., clicks) to train and test different algorithms/ranking models. A user-friendly documentation can be found here.

Get Started

Create virtual environment (optional):

pip install --user virtualenv
~/.local/bin/virtualenv -p python3 ./venv
source venv/bin/activate

Install ULTRA from the source:

git clone https://github.com/ULTR-Community/ULTRA_pytorch.git
cd ULTRA
make init

Run toy example:

bash example/toy/offline_exp_pipeline.sh

Structure

structure

Input Layers

  1. ClickSimulationFeed: this is the input layer that generate synthetic clicks on fixed ranked lists to feed the learning algorithm.

  2. DeterministicOnlineSimulationFeed: this is the input layer that first create ranked lists by sorting documents according to the current ranking model, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  3. StochasticOnlineSimulationFeed: this is the input layer that first create ranked lists by sampling documents based on their scores in the current ranking model and the Plackett-Luce distribution, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  4. DirectLabelFeed: this is the input layer that directly feed the true relevance labels of each documents to the learning algorithm.

Learning Algorithms

  1. NA: this model is an implementation of the naive algorithm that directly train models with input labels (e.g., clicks).

  2. DLA: this is an implementation of the Dual Learning Algorithm in Unbiased Learning to Rank with Unbiased Propensity Estimation.

  3. IPW: this model is an implementation of the Inverse Propensity Weighting algorithms in Learning to Rank with Selection Bias in Personal Search and Unbiased Learning-to-Rank with Biased Feedback

  4. REM: this model is an implementation of the regression-based EM algorithm in Position bias estimation for unbiased learning to rank in personal search

  5. PD: this model is an implementation of the pairwise debiasing algorithm in Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm.

  6. DBGD: this model is an implementation of the Dual Bandit Gradient Descent algorithm in Interactively optimizing information retrieval systems as a dueling bandits problem

  7. MGD: this model is an implementation of the Multileave Gradient Descent in Multileave Gradient Descent for Fast Online Learning to Rank

  8. NSGD: this model is an implementation of the Null Space Gradient Descent algorithm in Efficient Exploration of Gradient Space for Online Learning to Rank

  9. PDGD: this model is an implementation of the Pairwise Differentiable Gradient Descent algorithm in Differentiable unbiased online learning to rank

Ranking Models

  1. Linear: this is a linear ranking algorithm that compute ranking scores with a linear function.

  2. DNN: this is neural ranking algorithm that compute ranking scores with a multi-layer perceptron network (with non-linear activation functions).

  3. DLCM: this is an implementation of the Deep Listwise Context Model in Learning a Deep Listwise Context Model for Ranking Refinement (TODO).

  4. GSF: this is an implementation of the Groupwise Scoring Function in Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks (TODO).

  5. SetRank: this is an implementation of the SetRank model in SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval (TODO).

Supported Evaluation Metrics

  1. MRR: the Mean Reciprocal Rank.

  2. ERR: the Expected Reciprocal Rank from Expected reciprocal rank for graded relevance.

  3. ARP: the Average Relevance Position.

  4. NDCG: the Normalized Discounted Cumulative Gain.

  5. DCG: the Discounted Cumulative Gain.

  6. Precision: the Precision.

  7. MAP: the Mean Average Precision.

  8. Ordered_Pair_Accuracy: the percentage of correctedly ordered pair.

Click Simulation Example

Create click models for click simulations

python ultra/utils/click_models.py pbm 0.1 1 4 1.0 example/ClickModel

* The output is a json file containing the click mode that could be used for click simulation. More details could be found in the code.

(Optional) Estimate examination propensity with result randomization

python ultra/utils/propensity_estimator.py example/ClickModel/pbm_0.1_1.0_4_1.0.json 
   
     example/PropensityEstimator/

   

* The output is a json file containing the estimated examination propensity (used for IPW). DATA_DIR is the directory for the prepared data created by ./libsvm_tools/prepare_exp_data_with_svmrank.py. More details could be found in the code.

Citation

If you use ULTRA in your research, please use the following BibTex entry.

@misc{tran2021ultra,
      title={ULTRA: An Unbiased Learning To Rank Algorithm Toolbox}, 
      author={Anh Tran and Tao Yang and Qingyao Ai},
      year={2021},
      eprint={2108.05073},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}

@article{10.1145/3439861,
author = {Ai, Qingyao and Yang, Tao and Wang, Huazheng and Mao, Jiaxin},
title = {Unbiased Learning to Rank: Online or Offline?},
year = {2021},
issue_date = {February 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {39},
number = {2},
issn = {1046-8188},
url = {https://doi.org/10.1145/3439861},
doi = {10.1145/3439861},
journal = {ACM Trans. Inf. Syst.},
month = feb,
articleno = {21},
numpages = {29},
keywords = {unbiased learning, online learning, Learning to rank}
}

Development Team

​ ​ ​ ​

QingyaoAi
Qingyao Ai

Core Dev
ASST PROF, Univ. of Utah

anhtran1010
Anh Tran

Core Dev
Ph.D., Univ. of Utah

Taosheng-ty
Tao Yang

Core Dev
Ph.D., Univ. of Utah

huazhengwang
Huazheng Wang

Core Dev
Ph.D., Univ. of Virginia

defaultstr
Jiaxin Mao

Core Dev
ASST PROF, Renmin Univ.

Contribution

Please read the Contributing Guide before creating a pull request.

Project Organizers

  • Qingyao Ai
    • School of Computing, University of Utah
    • Homepage

License

Apache-2.0

Copyright (c) 2020-present, Qingyao Ai (QingyaoAi) "# Pytorch_ULTRA"

Owner
Facilitating the design, comparison and sharing of unbiased and online learning to rank algorithms.
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Arijit Dasgupta 9 Jul 28, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022