[ICCV 2021] Deep Hough Voting for Robust Global Registration

Related tags

Deep LearningDHVR
Overview

Deep Hough Voting for Robust Global Registration, ICCV, 2021

Project Page | Paper | Video

Deep Hough Voting for Robust Global Registration
Junha Lee1, Seungwook Kim1, Minsu Cho1, Jaesik Park1
1POSTECH CSE & GSAI
in ICCV 2021

An Overview of the proposed pipeline

Overview

Point cloud registration is the task of estimating the rigid transformation that aligns a pair of point cloud fragments. We present an efficient and robust framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space. First, deep geometric features are extracted from a point cloud pair to compute putative correspondences. We then construct a set of triplets of correspondences to cast votes on the 6D Hough space, representing the transformation parameters in sparse tensors. Next, a fully convolutional refinement module is applied to refine the noisy votes. Finally, we identify the consensus among the correspondences from the Hough space, which we use to predict our final transformation parameters. Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset. We further demonstrate the generalizability of our approach by setting a new state-of-the-art on ICL-NUIM dataset, where we integrate our module into a multi-way registration pipeline.

Citing our paper

@InProceedings{lee2021deephough, 
    title={Deep Hough Voting for Robust Global Registration},
    author={Junha Lee and Seungwook Kim and Minsu Cho and Jaesik Park},
    booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year={2021}
}

Experiments

Speed vs Accuracy Qualitative results
Table Accuracy vs. Speed

Installation

This repository is developed and tested on

  • Ubuntu 18.04
  • CUDA 11.1
  • Python 3.8.11
  • Pytorch 1.4.9
  • MinkowskiEngine 0.5.4

Environment Setup

Our pipeline is built on MinkowskiEngine. You can install the MinkowskiEngine and the python requirements on your system with:

# setup requirements for MinkowksiEngine
conda create -n dhvr python=3.8
conda install pytorch=1.9.1 torchvision cudatoolkit=11.1 -c pytorch -c nvidia
conda install numpy
conda install openblas-devel -c anaconda

# install MinkowskiEngine
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --install-option="--blas_include_dirs=${CONDA_PREFIX}/include" --install-option="--blas=openblas"

# download and setup DHVR
git clone https://github.com/junha-l/DHVR.git
cd DHVR
pip install -r requirements.txt

We also depends on torch-batch-svd, an open-source library for 100x faster (batched) svd on GPU. You can follow the below instruction to install torch-batch-svd

# if your cuda installation directory is other than "/usr/local/cuda", you have to specify it.
(CUDA_HOME=PATH/TO/CUDA/ROOT) bash scripts/install_3rdparty.sh

3DMatch Dataset

Training

You can download preprocessed training dataset, which is provided by the author of FCGF, via these commands:

# download 3dmatch train set 
bash scripts/download_3dmatch.sh PATH/TO/3DMATCH
# create symlink
ln -s PATH/TO/3DMATCH ./dataset/3dmatch

Testing

The official 3DMatch test set is available at the official website. You should download fragments data of Geometric Registration Benchmark and decompress them to a new folder.

Then, create a symlink via following command:

ln -s PATH/TO/3DMATCH_TEST ./dataset/3dmatch-test

Train DHVR

The default feature extractor we used in our experiments is FCGF. You can download pretrained FCGF models via following commands:

bash scripts/download_weights.sh

Then, train with

python train.py config/train_3dmatch.gin --run_name NAME_OF_EXPERIMENT

Test DHVR

You can test DHVR via following commands:

3DMatch

python test.py config/test_3dmatch.gin --run_name EXP_NAME --load_path PATH/TO/CHECKPOINT

3DLoMatch

python test.py config/test_3dlomatch.gin --run_name EXP_NAME --load_path PATH/TO/CHECKPOINT

Pretrained Weights

We also provide pretrained weights on 3DMatch dataset. You can download the checkpoint in following link.

Acknowledments

Our code is based on the MinkowskiEngine. We also refer to FCGF, DGR, and torch-batch-svd.

Owner
Junha Lee
Junha Lee
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022