Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Overview

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021)

스크린샷 2021-08-21 오후 3 30 22

Dataset License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

About

[Project site] [Arxiv] [Download Dataset] [Video]

This is an official repository of "Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination", which is accepted as a poster in ICCV 2021.

This repository provides

  1. Preprocessing code of "Large Scale Multi Illuminant (LSMI) Dataset"
  2. Code of Pixel-level illumination inference U-Net
  3. Pre-trained model parameter for testing U-Net

Requirements

Our running environment is as follows:

  • Python version 3.8.3
  • Pytorch version 1.7.0
  • CUDA version 11.2

We provide a docker image, which supports all extra requirements (ex. dcraw,rawpy,tensorboard...), including specified version of python, pytorch, CUDA above.

You can download the docker image here.

The following instructions are assumed to run in a docker container that uses the docker image we provided.

Getting Started

Clone this repo

In the docker container, clone this repository first.

git clone https://github.com/DY112/LSMI-dataset.git

Download the LSMI dataset

You should first download the LSMI dataset from here.

The dataset is composed of 3 sub-folers named "galaxy", "nikon", "sony".

Folders named by each camera include several scenes, and each scene folder contains full-resolution RAW files and JPG files that is converted to sRGB color space.

Move all three folders to the root of cloned repository.

Preprocess the LSMI dataset

  1. Convert raw images to tiff files

    To convert original 1-channel bayer-pattern images to 3-channel RGB tiff images, run following code:

    python 0_cvt2tiff.py

    You should modify SOURCE and EXT variables properly.

    The converted tiff files are generated at the same location as the source file.

  2. Make mixture map

    python 1_make_mixture_map.py

    Change the CAMERA variable properly to the target directory you want.

    .npy tpye mixture map data will be generated at each scene's directory.

  3. Crop

    python 2_preprocess_data.py

    The image and the mixture map are resized as a square with a length of the SIZE variable inside the code, and the ground-truth image is also generated.

    We set the size to 256 to test the U-Net, and 512 for train the U-Net.

    Here, to test the pre-trained U-Net, set size to 256.

    The new dataset is created in a folder with the name of the CAMERA_SIZE. (Ex. galaxy_256)

Use U-Net for pixel-level AWB

You can download pre-trained model parameter here.

Pre-trained model is trained on 512x512 data with random crop & random pixel level relighting augmentation method.

Locate downloaded models folder into SVWB_Unet.

  • Test U-Net

    cd SVWB_Unet
    sh test.sh
  • Train U-Net

    cd SVWB_Unet
    sh train.sh
Owner
DongYoung Kim
Research Assistant of CIPLAB
DongYoung Kim
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

Gengshan Yang 59 Nov 25, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022