Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

Overview

custom-cnn-fashion-mnist

Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

The following hyperparameters were selected for hypertuning with the Grid Search with 5-fold cross-validation strategies:

  • Amount of hidden layers (Convolution + Max Pooling)
  • Number of filters per layer
  • Filter size (H x H)
  • Pool size (B x B)

The best result found was obtained with the following values:

  • Amount of hidden layers (Convolution + Max Pooling): 2
  • Number of filters per layer: 64 on layer 1 and 128 on layer 2
  • Filter Size: (8 x 8)
  • Pool size (3x3)

After training for 30 epochs, an accuracy of 82% was reached in the validation and test sets, demonstrating a high capacity for generalization of the architecture found.


Criando uma arquitetura hipertunada e customizada de CNN (Rede Neural Convolucional) para o conjunto de dados Fashion MNIST com Python, Keras e Tensorflow.

Foram selecionados para hypertuning com as estratégias Grid Search e Validação Cruzada 5-fold os seguintes hiperparâmetros:

  • Quantidade de camadas ocultas (Convolução + Max Pooling)
  • Quantidade de filtros por camada
  • Tamanho do filtro (A x A)
  • Tamanho do pool (B x B)

O melhor resultado encontrado foi obtido com os seguintes valores:

  • Quantidade de camadas ocultas (Convolução + Max Pooling): 2
  • Quantidade de filtros por camada: 64 na camada 1 e 128 na camada 2
  • Tamanho do filtro: (8 x 8)
  • Tamanho do pool (3 x 3)

Após um treino de 30 épocas, alcançou-se uma acurácia nos conjuntos de validação e teste de 82%, demonstrando alta capacidade de generalização da arquitetura encontrada.


Projeto desenvolvido para a disciplina Deep Learning do curso de Especialização em Inteligência Artifical Aplicada, semestre 2021/2, do Instituto Federal de Goiás - Câmpus Goiânia.

Owner
Danielle Almeida
Desenvolvedora de Software | Pesquisadora em Inteligência Artificial
Danielle Almeida
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022