A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

Overview

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network

The official code of VisionLAN (ICCV2021). VisionLAN successfully achieves the transformation from two-step to one-step recognition (from Two to One), which adaptively considers both visual and linguistic information in a unified structure without the need of extra language model.

ToDo List

  • Release code
  • Document for Installation
  • Trained models
  • Document for testing and training
  • Evaluation
  • re-organize and clean the parameters

Updates

2021/10/9 We upload the code, datasets, and trained models.
2021/10/9 Fix a bug in cfs_LF_1.py.

Requirements

Python2.7
Colour
LMDB
Pillow
opencv-python
torch==1.3.0
torchvision==0.4.1
editdistance
matplotlib==2.2.5

Step-by-step install

pip install -r requirements.txt

Data preparing

Training sets

SynthText We use the tool to crop images from original SynthText dataset, and convert images into LMDB dataset.

MJSynth We use tool to convert images into LMDB dataset. (We only use training set in this implementation)

We have upload these LMDB datasets in RuiKe (password:x6si).

Testing sets

Evaluation datasets, LMDB datasets can be downloaded from BaiduYun (password:fjyy) or RuiKe

IIIT5K Words (IIIT5K)
ICDAR 2013 (IC13)
Street View Text (SVT)
ICDAR 2015 (IC15)
Street View Text-Perspective (SVTP)
CUTE80 (CUTE)

The structure of data directory is

datasets
├── evaluation
│   ├── Sumof6benchmarks
│   ├── CUTE
│   ├── IC13
│   ├── IC15
│   ├── IIIT5K
│   ├── SVT
│   └── SVTP
└── train
    ├── MJSynth
    └── SynthText

Evaluation

Results on 6 benchmarks

Methods IIIT5K IC13 SVT IC15 SVTP CUTE
Paper 95.8 95.7 91.7 83.7 86.0 88.5
This implementation 95.9 96.3 90.7 84.1 85.3 88.9

Download our trained model in BaiduYun (password: e3kj) or RuiKe (password: cxqi), and put it in output/LA/final.pth.

CUDA_VISIBLE_DEVICES=0 python eval.py

Visualize character-wise mask map

Examples of the visualization of mask_c: image

   CUDA_VISIBLE_DEVICES=0 python visualize.py

You can modify the 'mask_id' in cfgs/cfgs_visualize to change the mask position for visualization.

Results on OST datasets

Occlusion Scene Text (OST) dataset is proposed to reflect the ability for recognizing cases with missing visual cues. This dataset is collected from 6 benchmarks (IC13, IC15, IIIT5K, SVT, SVTP and CT) containing 4832 images. Images in this dataset are manually occluded in weak or heavy degree. Weak and heavy degrees mean that we occlude the character using one or two lines. For each image, we randomly choose one degree to only cover one character.

Examples of images in OST dataset: image image

Methods Average Weak Heavy
Paper 60.3 70.3 50.3
This implementation 60.3 70.8 49.8

The LMDB dataset is available in BaiduYun (password:yrrj) or RuiKe (password: vmzr)

Training

4 2080Ti GPUs are used in this implementation.

Language-free (LF) process

Step 1: We first train the vision model without MLM. (Our trained LF_1 model(BaiduYun) (password:avs5) or RuiKe (password:qwzn))

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LF_1.py

Step 2: We finetune the MLM with vision model (Our trained LF_2 model(BaiduYun) (password:04jg) or RuiKe (password:v67q))

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LF_2.py

Language-aware (LA) process

Use the mask map to guide the linguistic learning in the vision model.

   CUDA_VISIBLE_DEVICES=0,1,2,3 python train_LA.py

Tip: In LA process, model with loss (Loss VisionLAN) higher than 0.3 and the training accuracy (Accuracy) lower than 91.0 after the first 200 training iters obains better performance.

Improvement

  1. Mask id randomly generated according to the max length can not well adapt to the occlusion of long text. Thus, evenly sampled mask id can further improve the performance of MLM.
  2. Heavier vision model is able to capture more robust linguistic information in our later experiments.

Citation

If you find our method useful for your reserach, please cite

 @article{wang2021two,
  title={From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network},
  author={Wang, Yuxin and Xie, Hongtao and Fang, Shancheng and Wang, Jing and Zhu, Shenggao and Zhang, Yongdong},
  journal={ICCV},
  year={2021}
}

Feedback

Suggestions and discussions are greatly welcome. Please contact the authors by sending email to [email protected]

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022