An AutoML survey focusing on practical systems.

Overview

AutoML Survey

An (in-progress) AutoML survey focusing on practical systems.


This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow daily. Hence, we cannot hope to provide a comprehensive description of every interesting idea or approach available. Thus, we decided to focus on practical AutoML systems, and spread outwards from there into the methodologies and theoretical concepts that power these systems. Our intuition is that, even though there are a lot of interesting ideas still in research stage, the most mature and battle-tested concepts are those that have been succesfully applied to construct practical AutoML systems.

To this end, we are building a database of qualitative criteria for all AutoML systems we've heard of. We define an AutoML system as a software project that can be used by non-experts in machine learning to build effective ML pipelines on at least some common domains and tasks. It doesn't matter if its open-source and/or commercial, a library or an application with a GUI, or a cloud service. What matters is that it is intended to be used in practice, as opposed to, say, a reference implementation of a novel AutoML strategy in a Jupyter Notebook.

Features of an AutoML system

For each of them we are creating a system card that describes, in our opinion, the most relevant features of the system, both from the scientific and the engineering points of view. To describe an AutoML system, we use a YAML-based definition. Most of the features are self-explanatory.

💡 Check data/systems/_template.yml for a starting template.

Basic information

Characteristics about the basic information of the system as a software product.

  • name (str): Name of the system.
  • description (str): A short (2-4 sentences) description of the sytem.
  • website (str): The URL of the main website or documentation.
  • open_source (bool): Whether the system is open-source.
  • institutions (list[str]): List of businesses or academic institutions that directly support the development of the system, and/or hold intellectual property over it.
  • repository (str): If it's open-source, link of a public source code repository, otherwise null.
  • license (str): If it's open-source, a license key, otherwise null.
  • references (list[str]): List of links to relevant papers, preferably DOIs or other universal handlers, but can also be links to arxiv.org or other repositories sorted by most relevant papers, not date.

User interfaces

Characteristics describing how the users interact with the system.

  • cli (bool): Whether the system has a command line interface
  • gui (bool): Whether the system has a graphic user interface
  • http (bool): Whether the system can used from an HTTP RESTful API
  • library (bool): Whether the system can be linked as a code library
  • programming_languages (list[str]): List of programming languages in which the system can be used, i.e., it is either natively coded in that language or there are maintained bindings (as opposed to using language X's standard way to call code from language Y).

Domains

Characteristics describing the domains in which the system can be applied, which roughly correspond to the types of input data that the system can handle.

  • domains (list[str]): Domains in which the system can be deployed. Valid values are:
    • images
    • nlp
    • tabular
    • time_series
  • multi_domain (bool): Whether the system supports multiple domains for a single workflow, e.g., by allowing multiple inputs of different types simultaneously

Techniques

Characteristics describing the actual models and techniques used in the system, and the underlying ML libraries where those techniques are implemented.

  • techniques (list[str]): List of high-level techniques that are available in the systems, broadly classified according to model families. Valid values are:
    • linear_models
    • trees
    • bayesian
    • kernel_machines
    • graphical_models
    • mlp
    • cnn
    • rnn
    • pretrained
    • ensembles
    • ad_hoc ( 📝 indicates non-ML algorithms, e.g., tokenizers)
  • distillation (bool): Whether the system supports model distillation
  • ml_libraries (list[str]): List of ML libraries that support the system, i.e., where the techniques are actually implemented, if any. Valid values are lists of strings. Some examples are:
    • scikit-learn
    • keras
    • pytorch
    • nltk
    • spacy
    • transformers

Tasks

Characteristics describing the types of tasks, or problems, in which the system can be applied, which roughly correspond to the types of outputs supported.

  • tasks (list[str]): List of high-level tasks the system can perform automatically. Valid values are:
    • classification
    • structured_prediction
    • structured_generation
    • unstructured_generation
    • regression
    • clustering
    • imputation
    • segmentation
    • feature_preprocessing
    • feature_selection
    • data_augmentation
    • dimensionality_reduction
    • data_preprocessing ( 📝 domain-agonostic data preprocessing such as normalization and scaling)
    • domain_preprocessing ( 📝 refers to domain-specific preprocessing, e.g., stemming)
  • multi_task: Whether the system supports multiple tasks in a single workflow, e.g., by allowing multiple output heads from the same neural network

Search strategies

Characteristics describing the optimizaction/search strategies used for model search and/or hyperparameter tunning.

  • search_strategies (list[str]): List of high-level search strategies that are available in the system. Valid values are:
    • random
    • evolutionary
    • gradient_descent
    • hill_climbing
    • bayesian
    • grid
    • hyperband
    • reinforcement_learning
    • constructive
    • monte_carlo
  • meta_learning (list[str]): If the system includes meta-learning, list of broadly classified techniques used. Valid values are:
    • portfolio
    • warm_start

Search space

Characteristics describing the search space, the types of hyperparameters that can be optimized, and the types of ML pipelines that can be represented in this space.

  • search_space: High-level characteristics of the hyperparameter search space.
    • hierarchical (bool): If there are hyperparameters that only make sense conditioned to others.
    • probabilistic (bool): If the hyperparameter space has an associated probabilistic model.
    • differentiable (bool): If the hyperameter space can be used for gradient descent.
    • automatic (bool): If the global structure of the hyperparameter space is inferred automatically from, e.g., type annotations or model's documentation, as opposed to explicitely defined by the developers or the user.
    • hyperparameters (list[str]): Types of hyperparameters that can be optimized. Valid values are:
      • continuous
      • discrete
      • categorical
      • conditional
    • pipelines: Types of pipelines that can be discovered by the AutoML process. Each of the following keys is boolean.
      • single (bool): A single estimator (or model in general)
      • fixed (bool): A fixed pipeline with several, but predefined, steps
      • linear (bool): A variable-length pipeline where each step feeds on the immediately previous output
      • graph (bool): An arbitrarily graph-shaped pipeline where each step can feed on any of the previous outputs
    • robust (bool): Whether the seach space contains potentially invalid pipelines that are only discovered when evaluated, e.g., allowing a dense-only estimator to precede a sparse transformer.

Software architecture

Other characteristics describing general features of the system as a software product.

  • extensible (bool): Whether the system is designed to be extensible, in the sense that a user can add a single new type of model, or search algorithm, etc., in an easy manner, not needing to modify any part of the system/
  • accessible (bool): Whether the models obtained from the AutoML process can be freely inspected by the user up to the level of individual parameters (e.g., neural network weights).
  • portable (bool): Whether the models obtained can be exported out of the AutoML system, either on a standard format, or, at least, in a format native of the underlying ML library,such that they can be deployed on another platform without depending on the AutoML system itself.
  • computational_resources: Computational resources that, if available, can be leveraged by the system.
    • gpu (bool): Whether the system supports GPUs.
    • tpu (bool): Whether the system supports TPUs.
    • cluster (bool): Whether the system supports cluster-based parallelism.

How to contribute

If you are an author or a user of any practical AutoML system that roughly fits the previous criteria, we would love to have your contributions. You can add new systems, add information for existing ones, or fix anything that is incorrect.

To do this, either create a new or modify an existing file in data/systems. Once done, you can run make check to ensure that the modifications are valid with respect to the schema defined in scripts/models.py. If you need to add new fields, or new values to any of the enumerations defined, feel free to modify the corresponding schema as well (and modify both data/systems/_template.yml and this README).

Once validated, you can open a pull request.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Owner
AutoGOAL
Democratizing Machine Learning
AutoGOAL
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Software Engineer Salary Prediction

Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.

Jhanvi Mimani 1 Jan 08, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated

Santosh 640 Dec 31, 2022
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022