A GitHub action that suggests type annotations for Python using machine learning.

Overview

Typilus: Suggest Python Type Annotations

A GitHub action that suggests type annotations for Python using machine learning.

This action makes suggestions within each pull request as suggested edits. You can then directly apply these suggestions to your code or ignore them.

Sample Suggestion Sample Suggestion

What are Python type annotations? Introduced in Python 3.5, type hints (more traditionally called type annotations) allow users to annotate their code with the expected types. These annotations are optionally checked by external tools, such as mypy and pyright, to prevent type errors; they also facilitate code comprehension and navigation. The typing module provides the core types.

Why use machine learning? Given the dynamic nature of Python, type inference is challenging, especially over partial contexts. To tackle this challenge, we use a graph neural network model that predicts types by probabilistically reasoning over a program’s structure, names, and patterns. This allows us to make suggestions with only a partial context, at the cost of suggesting some false positives.

Install Action in your Repository

To use the GitHub action, create a workflow file. For example,

name: Typilus Type Annotation Suggestions

# Controls when the action will run. Triggers the workflow on push or pull request
# events but only for the master branch
on:
  pull_request:
    branches: [ master ]

jobs:
  suggest:
    # The type of runner that the job will run on
    runs-on: ubuntu-latest

    steps:
    # Checks-out your repository under $GITHUB_WORKSPACE, so that typilus can access it.
    - uses: actions/[email protected]
    - uses: typilus/[email protected]
      env:
        GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
        MODEL_PATH: path/to/model.pkl.gz   # Optional: provide the path of a custom model instead of the pre-trained model.
        SUGGESTION_CONFIDENCE_THRESHOLD: 0.8   # Configure this to limit the confidence of suggestions on un-annotated locations. A float in [0, 1]. Default 0.8
        DISAGREEMENT_CONFIDENCE_THRESHOLD: 0.95  # Configure this to limit the confidence of suggestions on annotated locations.  A float in [0, 1]. Default 0.95

The action uses the GITHUB_TOKEN to retrieve the diff of the pull request and to post comments on the analyzed pull request.

Technical Details & Internals

This GitHub action is a reimplementation of the Graph2Class model of Allamanis et al. PLDI 2020 using the ptgnn library. Internally, it uses a Graph Neural Network to predict likely type annotations for Python code.

This action uses a pre-trained neural network that has been trained on a corpus of open-source repositories that use Python's type annotations. At this point we do not support online adaptation of the model to each project.

Training your own model

You may wish to train your own model and use it in this action. To do so, please follow the steps in ptgnn. Then provide a path to the model in your GitHub action configuration, through the MODEL_PATH environment variable.

Contributing

We welcome external contributions and ideas. Please look at the issues in the repository for ideas and improvements.

You might also like...
 30 Days Of Machine Learning Using Pytorch
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

A machine learning web application for binary classification using streamlit
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Comments
  • IndexError: list index out of range

    IndexError: list index out of range

    Diff GET Status Code:  200
    Traceback (most recent call last):
      File "/usr/src/entrypoint.py", line 81, in <module>
        changed_files = get_changed_files(diff_rq.text)
      File "/usr/src/changeutils.py", line 38, in get_changed_files
        assert file_diff_lines[3].startswith("---")
    IndexError: list index out of range
    

    logs_302.zip

    opened by ZdenekM 1
  • Several small fixes

    Several small fixes

    Here are couple of things I noticed trying Typilus inference using GH Action:

    • gracefully handle patches that include a file renames (\wo any content modifications) by skipping such files
    • extractor stats reporting only processed files
    opened by bzz 0
  • Create a ptgnn-based Typilus model

    Create a ptgnn-based Typilus model

    Create and use the full Typilus model instead of graph2class.

    • [ ] Implement it in ptgnn
    • [ ] Use action cache to store intermediate result
    • [ ] Auto-update type space "once in a while"
    enhancement 
    opened by mallamanis 0
Releases(v0.9)
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
SPCL 48 Dec 12, 2022
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023