Dual Adaptive Sampling for Machine Learning Interatomic potential.

Related tags

Machine Learningdas
Overview

DAS

Dual Adaptive Sampling for Machine Learning Interatomic potential.

How to cite

If you use this code in your research, please cite this using: Hongliang Yang, Yifan Zhu, Erting Dong, Yabei Wu, Jiong Yang, and Wenqing Zhang. Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy. Phys. Rev. B 104, 094310 (2021).

Install

Install pymtp

You should first install the python interface for mtp: https://github.com/hlyang1992/pymtp

Install das

You can download the code by

git clone https://github.com/hlyang1992/das
cd das
cp -r <path-to-mlip-2>/untrained_mtps/*.mtp das/utils/untrained_mtps

Then remove the redundant settings from each mtp file. Only the following settings can be retained for each mtp file:

radial_funcs_count = 
alpha_moments_count = 
alpha_index_basic_count = 
alpha_index_basic = 
alpha_index_times_count = 
alpha_index_times = 
alpha_scalar_moments = 
alpha_moment_mapping =

Install das by

cd <path-to-das>
pip install -r requirements.txt
pip install .

Usage

das  config_dir  job_name

Configuration

The configuration directory config_dir must contain the configuration file conf.yaml, which controls all sampling processes. The conf.yaml file should look like the following:

"global_settings":

"machine_settings":

"selector_settings": {} 

"labeler_settings":

"trainer_settings":

"sampler_settings":

"init_conf_setting":

"iter_params_template":

"iter_params":
  • global_settings:
"global_settings":
  # The elements in the system, the order of the elements does not matter, the program automatically numbers the 
  # atomic types according to their atomic number from smallest to largest.
  "unique_elements": [ "Co", "Sb" ]
  # path to VASP Pseudopotential Database, see detail at https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html#vasp
  "vasp_pp_path": "path_to_directory" 
  • machine_settings:

All time-consuming computational tasks such as sampling, labeling, and training can be dispatched to designated machines via ssh. Currently only LSF is supported and migration to other job management systems is very easy.

"machine_settings":
  "machine_1":
    # The supported machine types are now: `machine_lsf`, `machine_shell`
    "machine_type": "machine_lsf"
    "host": "ip address"
    "user": "username"
    "password": "password"
    # Exclude these nodes when submitting tasks.
    "bad_nodes": [ ] # #BSUB -R "hname!={{node}}"
    "port": 22
    # number of cores for each task
    "n_cores": 40 # #BSUB -n {{ncores}}
    "n_tasks": 40 # The maximum number of tasks to run simultaneously.
    "q_name": "short" # #BSUB -q {{q_name}}
    "env_source_file": "env.sh" # env.sh is in the config_dir
    "run_dir": "path-to-run-directory-in-target"
    "extra_params":
      "vasp_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP vasp"
      "lmp_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP lmp_mlp"
      "mlip_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP mlp train"
      "python_cmd": "absolute path to python path"
  "machine_2":
    # setting for machchine_2
    "machine_type": "machine_lsf"
    # ...

You should prepare a file to set the environment variables. The program will source this file to set the environment variables after connecting to the machine via ssh. For technical reasons please see: The remote shell environment doesn’t match interactive shells

  • sampler_settings
"scale_1":
  "kind": "scale_box"
  "scale_factors": [0.998, 0.9985, 0.999]
"scale_2":
  "kind": "scale_box"
  "scale_factors": [[0.998, 0.9985, 0.999, 0.997], # a
                    [1.002, 1.003, 1.004, 1.005],  # b
                    [0.997, 0.995, 0.999, 0.996]] # c
"nvt_0": 
  "kind": "lmp_model_sampler"
  "max_number_confs": 5
  "min_number_confs": 0
  "machine": "machine_1"
  "lmp_vars":
    "temp": [ 100, 150 ]
    "steps": [ 10000 ]
    "nevery": [ 20 ]
    "prev_steps": [ 0 ]
 
"npt_0": 
  "kind": "lmp_model_sampler"
  "max_number_confs": 5
  "min_number_confs": 0
  "machine": "machine_2"
  "lmp_vars":
    "temp": [ 100, 150 ]
    "steps": [ 10000 ]
    "nevery": [ 20 ]
    "press": [100, 200] # bar
    "prev_steps": [ 0 ]
  • "labeler_settings"

We use ase to generate input files (INCAR, POTCAR, KPOINTS) for VASP calculation. Please see detail at Ase vasp calculator

"labeler_settings":
  "vasp":
    "kind": "vasp"
    "machine": "ty_label"
    "vasp_parms":
      "xc": "pbe"
      "prec": "A"
      # other setting for vasp calculations
  • "trainer_settings"
"trainer_settings":
  "train_5_model":
    "kind": "mtp_trainer"
    "machine": "ty_train" 
    "model_index": 18 
    "min_dist": 1.39 
    "max_dist": 5.0
    "n_models": 5 
    "train_from_prev_model": true 
  • init_conf_setting:
"init_conf_setting":
  "-1": [ "init_MD.cfg" ]
  "-2": [ "init_1.vasp" ]
  "-3": [ "init_2.vasp" ]
  • iter_params_template:
"iter_params_template":
  "0":
    "init_conf": [ -1 ]
    "sampler": [ ]
    "selector": [ ]
    "labeler": [ ]
    "trainer": [ "train_5_model" ]
  "10":
    "init_conf": [ -2 ]
    "sampler": [ "scale_0", "nvt_0" ]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  "20":
    "init_conf": [ -3 ]
    "sampler": [ "npt_0"]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  "30":
    "init_conf": [ -2,-3 ]
    "sampler": [ "npt_0"]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  • iter_params:
"iter_params":
  [
    [ "0" ],
    # If the last one is LOOP, repeat all the previous ones until convergence.
    ["10", "LOOP"], 
    ["30", "LOOP"],
    ["10", "10"]  
    ["20"],
  ]
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers Documentation https://www.kxy.ai/reference/ Installation From PyPi: pip inst

KXY Technologies, Inc. 35 Jan 02, 2023
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
AutoX是一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色、简单易用、通用、自动化、灵活。

English | 简体中文 AutoX是什么? AutoX一个高效的自动化机器学习工具,它主要针对于表格类型的数据挖掘竞赛。 它的特点包括: 效果出色: AutoX在多个kaggle数据集上,效果显著优于其他解决方案(见效果对比)。 简单易用: AutoX的接口和sklearn类似,方便上手使用。

4Paradigm 431 Dec 28, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Machine learning algorithms implementation

Machine learning algorithms implementation This repository consisits of implementation of various machine learning algorithms. The algorithms implemen

Karun Dawadi 1 Jan 03, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022