Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Overview

Phoenix-Drone-Simulation

An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor:

  • Can be used for Reinforcement Learning (check out the examples!) or Model Predictive Control
  • We used this repository for sim-to-real transfer experiments (see publication [1] below)
  • The implemented dynamics model is based on the Bitcraze's Crazyflie 2.1 nano-quadrotor
Circle Task TakeOff
Circle TakeOff

The following tasks are currently available to fly the little drone:

  • Hover
  • Circle
  • Take-off (implemented but not yet working properly: reward function must be tuned!)
  • Reach (not yet implemented)

Overview of Environments

Task Controller Physics Observation Frequency Domain Randomization Aerodynamic effects Motor Dynamics
DroneHoverSimpleEnv-v0 Hover PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneHoverBulletEnv-v0 Hover PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneCircleSimpleEnv-v0 Circle PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneCircleBulletEnv-v0 Circle PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneTakeOffSimpleEnv-v0 Take-off PWM (100Hz) Simple 100 Hz 10% Ground-effect Instant force
DroneTakeOffBulletEnv-v0 Take-off PWM (100Hz) PyBullet 100 Hz 10% Ground-effect First-order

Installation and Requirements

Here are the (few) steps to follow to get our repository ready to run. Clone the repository and install the phoenix-drone-simulation package via pip. Note that everything after a $ is entered on a terminal, while everything after >>> is passed to a Python interpreter. Please, use the following three steps for installation:

$ git clone https://github.com/SvenGronauer/phoenix-drone-simulation
$ cd phoenix-drone-simulation/
$ pip install -e .

This package follows OpenAI's Gym Interface.

Note: if your default python is 2.7, in the following, replace pip with pip3 and python with python3

Supported Systems

We tested this package under Ubuntu 20.04 and Mac OS X 11.2 running Python 3.7 and 3.8. Other system might work as well but have not been tested yet. Note that PyBullet supports Windows as platform only experimentally!.

Dependencies

Bullet-Safety-Gym heavily depends on two packages:

Getting Started

After the successful installation of the repository, the Bullet-Safety-Gym environments can be simply instantiated via gym.make. See:

>>> import gym
>>> import phoenix_drone_simulation
>>> env = gym.make('DroneHoverBulletEnv-v0')

The functional interface follows the API of the OpenAI Gym (Brockman et al., 2016) that consists of the three following important functions:

>>> observation = env.reset()
>>> random_action = env.action_space.sample()  # usually the action is determined by a policy
>>> next_observation, reward, done, info = env.step(random_action)

A minimal code for visualizing a uniformly random policy in a GUI, can be seen in:

import gym
import time
import phoenix_drone_simulation

env = gym.make('DroneHoverBulletEnv-v0')

while True:
    done = False
    env.render()  # make GUI of PyBullet appear
    x = env.reset()
    while not done:
        random_action = env.action_space.sample()
        x, reward, done, info = env.step(random_action)
        time.sleep(0.05)

Note that only calling the render function before the reset function triggers visuals.

Training Policies

To train an agent with the PPO algorithm call:

$ python -m phoenix_drone_simulation.train --alg ppo --env DroneHoverBulletEnv-v0

This works with basically every environment that is compatible with the OpenAI Gym interface:

$ python -m phoenix_drone_simulation.train --alg ppo --env CartPole-v0

After an RL model has been trained and its checkpoint has been saved on your disk, you can visualize the checkpoint:

$ python -m phoenix_drone_simulation.play --ckpt PATH_TO_CKPT

where PATH_TO_CKPT is the path to the checkpoint, e.g. /var/tmp/sven/DroneHoverSimpleEnv-v0/trpo/2021-11-16__16-08-09/seed_51544

Examples

generate_trajectories.py

See the generate_trajectories.py script which shows how to generate data batches of size N. Use generate_trajectories.py --play to visualize the policy in PyBullet simulator.

train_drone_hover.py

Use Reinforcement Learning (RL) to learn the drone holding its position at (0, 0, 1). This canonical example relies on the RL-safety-Algorithms repository which is a very strong framework for parallel RL algorithm training.

transfer_learning_drone_hover.py

Shows a transfer learning approach. We first train a PPO model in the source domain DroneHoverSimpleEnv-v0 and then re-train the model on a more complex target domain DroneHoverBulletEnv-v0. Note that the DroneHoverBulletEnv-v0 environment builds upon an accurate motor modelling of the CrazyFlie drone and includes a motor dead time as well as a motor lag.

Tools

  • convert.py @ Sven Gronauer

A function used by Sven to extract the policy networks from his trained Actor Critic module and convert the model to a json file format.

Version History and Changes

Version Changes Date
v1.0 Public Release: Simulation parameters as proposed in Publication [1] 19.04.2022
v0.2 Add: accurate motor dynamic model and first real-world transfer insights 21.09.2021
v0.1 Re-factor: of repository (only Hover task yet implemented) 18.05.2021
v0.0 Fork: from Gym-PyBullet-Drones Repo 01.12.2020

Publications

  1. Using Simulation Optimization to Improve Zero-shot Policy Transfer of Quadrotors

    Sven Gronauer, Matthias Kissel, Luca Sacchetto, Mathias Korte, Klaus Diepold

    https://arxiv.org/abs/2201.01369


Lastly, we want to thank:

  • Jacopo Panerati and his team for contributing the Gym-PyBullet-Drones Repo which was the staring point for this repository.

  • Artem Molchanov and collaborators for their hints about the CrazyFlie Firmware and the motor dynamics in their paper "Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Policies to Multiple Quadrotors"

  • Jakob Foerster for this Bachelor Thesis and his insights about the CrazyFlie's parameter values


This repository has been develepod at the

Chair of Data Processing
TUM School of Computation, Information and Technology
Technical University of Munich

Owner
Sven Gronauer
Electrical Engineering & Information Technology
Sven Gronauer
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

Simulated+Unsupervised (S+U) Learning in TensorFlow TensorFlow implementation of Learning from Simulated and Unsupervised Images through Adversarial T

Taehoon Kim 569 Dec 29, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022