Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Overview

Phoenix-Drone-Simulation

An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor:

  • Can be used for Reinforcement Learning (check out the examples!) or Model Predictive Control
  • We used this repository for sim-to-real transfer experiments (see publication [1] below)
  • The implemented dynamics model is based on the Bitcraze's Crazyflie 2.1 nano-quadrotor
Circle Task TakeOff
Circle TakeOff

The following tasks are currently available to fly the little drone:

  • Hover
  • Circle
  • Take-off (implemented but not yet working properly: reward function must be tuned!)
  • Reach (not yet implemented)

Overview of Environments

Task Controller Physics Observation Frequency Domain Randomization Aerodynamic effects Motor Dynamics
DroneHoverSimpleEnv-v0 Hover PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneHoverBulletEnv-v0 Hover PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneCircleSimpleEnv-v0 Circle PWM (100Hz) Simple 100 Hz 10% None Instant force
DroneCircleBulletEnv-v0 Circle PWM (100Hz) PyBullet 100 Hz 10% None First-order
DroneTakeOffSimpleEnv-v0 Take-off PWM (100Hz) Simple 100 Hz 10% Ground-effect Instant force
DroneTakeOffBulletEnv-v0 Take-off PWM (100Hz) PyBullet 100 Hz 10% Ground-effect First-order

Installation and Requirements

Here are the (few) steps to follow to get our repository ready to run. Clone the repository and install the phoenix-drone-simulation package via pip. Note that everything after a $ is entered on a terminal, while everything after >>> is passed to a Python interpreter. Please, use the following three steps for installation:

$ git clone https://github.com/SvenGronauer/phoenix-drone-simulation
$ cd phoenix-drone-simulation/
$ pip install -e .

This package follows OpenAI's Gym Interface.

Note: if your default python is 2.7, in the following, replace pip with pip3 and python with python3

Supported Systems

We tested this package under Ubuntu 20.04 and Mac OS X 11.2 running Python 3.7 and 3.8. Other system might work as well but have not been tested yet. Note that PyBullet supports Windows as platform only experimentally!.

Dependencies

Bullet-Safety-Gym heavily depends on two packages:

Getting Started

After the successful installation of the repository, the Bullet-Safety-Gym environments can be simply instantiated via gym.make. See:

>>> import gym
>>> import phoenix_drone_simulation
>>> env = gym.make('DroneHoverBulletEnv-v0')

The functional interface follows the API of the OpenAI Gym (Brockman et al., 2016) that consists of the three following important functions:

>>> observation = env.reset()
>>> random_action = env.action_space.sample()  # usually the action is determined by a policy
>>> next_observation, reward, done, info = env.step(random_action)

A minimal code for visualizing a uniformly random policy in a GUI, can be seen in:

import gym
import time
import phoenix_drone_simulation

env = gym.make('DroneHoverBulletEnv-v0')

while True:
    done = False
    env.render()  # make GUI of PyBullet appear
    x = env.reset()
    while not done:
        random_action = env.action_space.sample()
        x, reward, done, info = env.step(random_action)
        time.sleep(0.05)

Note that only calling the render function before the reset function triggers visuals.

Training Policies

To train an agent with the PPO algorithm call:

$ python -m phoenix_drone_simulation.train --alg ppo --env DroneHoverBulletEnv-v0

This works with basically every environment that is compatible with the OpenAI Gym interface:

$ python -m phoenix_drone_simulation.train --alg ppo --env CartPole-v0

After an RL model has been trained and its checkpoint has been saved on your disk, you can visualize the checkpoint:

$ python -m phoenix_drone_simulation.play --ckpt PATH_TO_CKPT

where PATH_TO_CKPT is the path to the checkpoint, e.g. /var/tmp/sven/DroneHoverSimpleEnv-v0/trpo/2021-11-16__16-08-09/seed_51544

Examples

generate_trajectories.py

See the generate_trajectories.py script which shows how to generate data batches of size N. Use generate_trajectories.py --play to visualize the policy in PyBullet simulator.

train_drone_hover.py

Use Reinforcement Learning (RL) to learn the drone holding its position at (0, 0, 1). This canonical example relies on the RL-safety-Algorithms repository which is a very strong framework for parallel RL algorithm training.

transfer_learning_drone_hover.py

Shows a transfer learning approach. We first train a PPO model in the source domain DroneHoverSimpleEnv-v0 and then re-train the model on a more complex target domain DroneHoverBulletEnv-v0. Note that the DroneHoverBulletEnv-v0 environment builds upon an accurate motor modelling of the CrazyFlie drone and includes a motor dead time as well as a motor lag.

Tools

  • convert.py @ Sven Gronauer

A function used by Sven to extract the policy networks from his trained Actor Critic module and convert the model to a json file format.

Version History and Changes

Version Changes Date
v1.0 Public Release: Simulation parameters as proposed in Publication [1] 19.04.2022
v0.2 Add: accurate motor dynamic model and first real-world transfer insights 21.09.2021
v0.1 Re-factor: of repository (only Hover task yet implemented) 18.05.2021
v0.0 Fork: from Gym-PyBullet-Drones Repo 01.12.2020

Publications

  1. Using Simulation Optimization to Improve Zero-shot Policy Transfer of Quadrotors

    Sven Gronauer, Matthias Kissel, Luca Sacchetto, Mathias Korte, Klaus Diepold

    https://arxiv.org/abs/2201.01369


Lastly, we want to thank:

  • Jacopo Panerati and his team for contributing the Gym-PyBullet-Drones Repo which was the staring point for this repository.

  • Artem Molchanov and collaborators for their hints about the CrazyFlie Firmware and the motor dynamics in their paper "Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Policies to Multiple Quadrotors"

  • Jakob Foerster for this Bachelor Thesis and his insights about the CrazyFlie's parameter values


This repository has been develepod at the

Chair of Data Processing
TUM School of Computation, Information and Technology
Technical University of Munich

Owner
Sven Gronauer
Electrical Engineering & Information Technology
Sven Gronauer
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Implementation of our paper 'RESA: Recurrent Feature-Shift Aggregator for Lane Detection' in AAAI2021.

RESA PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection". Our paper has been accepted by AAAI2021. Intro

137 Jan 02, 2023
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022