Oriented Response Networks, in CVPR 2017

Overview

Oriented Response Networks

[Home] [Project] [Paper] [Supp] [Poster]

illustration

Torch Implementation

The torch branch contains:

  • the official torch implementation of ORN.
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Torch7

Getting started

You can setup everything via a single command wget -O - https://git.io/vHCMI | bash or do it manually in case something goes wrong:

  1. install the dependencies (required by the demo code):

  2. clone the torch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b torch --single-branch ORN.torch
    cd ORN.torch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    # install the CPU/GPU/CuDNN version ORN.
    bash install.sh
  4. unzip the MNIST dataset:

    cd $DIR/demo/datasets
    unzip MNIST
  5. run the MNIST-Variants demo:

    cd $DIR/demo
    # you can modify the script to test different hyper-parameters
    bash ./scripts/Train_MNIST.sh

Trouble shooting

If you run into 'cudnn.find' not found, update Torch7 to the latest version via cd <TORCH_DIR> && bash ./update.sh then re-install everything.

More experiments

CIFAR 10/100

You can train the OR-WideResNet model (converted from WideResNet by simply replacing Conv layers with ORConv layers) on CIFAR dataset with WRN.

dataset=cifar10_original.t7 model=or-wrn widen_factor=4 depth=40 ./scripts/train_cifar.sh

With exactly the same settings, ORN-augmented WideResNet achieves state-of-the-art result while using significantly fewer parameters.

CIFAR

Network Params CIFAR-10 (ZCA) CIFAR-10 (mean/std) CIFAR-100 (ZCA) CIFAR-100 (mean/std)
DenseNet-100-12-dropout 7.0M - 4.10 - 20.20
DenseNet-190-40-dropout 25.6M - 3.46 - 17.18
WRN-40-4 8.9M 4.97 4.53 22.89 21.18
WRN-28-10-dropout 36.5M 4.17 3.89 20.50 18.85
WRN-40-10-dropout 55.8M - 3.80 - 18.3
ORN-40-4(1/2) 4.5M 4.13 3.43 21.24 18.82
ORN-28-10(1/2)-dropout 18.2M 3.52 2.98 19.22 16.15

Table.1 Test error (%) on CIFAR10/100 dataset with flip/translation augmentation)

ImageNet

ILSVRC2012

The effectiveness of ORN is further verified on large scale data. The OR-ResNet-18 model upgraded from ResNet-18 yields significant better performance when using similar parameters.

Network Params Top1-Error Top5-Error
ResNet-18 11.7M 30.614 10.98
OR-ResNet-18 11.4M 28.916 9.88

Table.2 Validation error (%) on ILSVRC-2012 dataset.

You can use facebook.resnet.torch to train the OR-ResNet-18 model from scratch or finetune it on your data by using the pre-trained weights.

-- To fill the model with the pre-trained weights:
model = require('or-resnet.lua')({tensorType='torch.CudaTensor', pretrained='or-resnet18_weights.t7'})

A more specific demo notebook of using the pre-trained OR-ResNet to classify images can be found here.

PyTorch Implementation

The pytorch branch contains:

  • the official pytorch implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • PyTorch

Getting started

  1. install the dependencies (required by the demo code):

    • tqdm: pip install tqdm
    • pillow: pip install Pillow
  2. clone the pytorch branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b pytorch --single-branch ORN.pytorch
    cd ORN.pytorch
    export DIR=$(pwd)
  3. install ORN:

    cd $DIR/install
    bash install.sh
  4. run the MNIST-Variants demo:

    cd $DIR/demo
    # train ORN on MNIST-rot
    python main.py --use-arf
    # train baseline CNN
    python main.py

Caffe Implementation

The caffe branch contains:

  • the official caffe implementation of ORN (alpha version supports 1x1/3x3 ARFs with 4/8 orientation channels only).
  • the MNIST-Variants demo.

Please follow the instruction below to install it and run the experiment demo.

Prerequisites

  • Linux (tested on ubuntu 14.04LTS)
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN mode are also available but significantly slower)
  • Caffe

Getting started

  1. install the dependency (required by the demo code):

  2. clone the caffe branch:

    # git version must be greater than 1.9.10
    git clone https://github.com/ZhouYanzhao/ORN.git -b caffe --single-branch ORN.caffe
    cd ORN.caffe
    export DIR=$(pwd)
  3. install ORN:

    # modify Makefile.config first
    # compile ORN.caffe
    make clean && make -j"$(nproc)" all
  4. run the MNIST-Variants demo:

    cd $DIR/examples/mnist
    bash get_mnist.sh
    # train ORN & CNN on MNIST-rot
    bash train.sh

Note

Due to implementation differences,

  • upgrading Conv layers to ORConv layers can be done by adding an orn_param
  • num_output of ORConv layers should be multipied by nOrientation of ARFs

Example:

layer {
  type: "Convolution"
  name: "ORConv" bottom: "Data" top: "ORConv"
  # add this line to replace regular filters with ARFs
  orn_param {orientations: 8}
  param { lr_mult: 1 decay_mult: 2}
  convolution_param {
    # this means 10 ARF feature maps
    num_output: 80
    kernel_size: 3
    stride: 1
    pad: 0
    weight_filler { type: "msra"}
    bias_filler { type: "constant" value: 0}
  }
}

Check the MNIST demo prototxt (and its visualization) for more details.

Citation

If you use the code in your research, please cite:

@INPROCEEDINGS{Zhou2017ORN,
    author = {Zhou, Yanzhao and Ye, Qixiang and Qiu, Qiang and Jiao, Jianbin},
    title = {Oriented Response Networks},
    booktitle = {CVPR},
    year = {2017}
}
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022