The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Overview

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long)

This is the repository for baseline models and annotated data for this paper: Akari Asai and Eunsol Choi. Challenges in Information Seeking QA:Unanswerable Questions and Paragraph Retrieval. In: Proceedings of ACL. 2021

In the paper, we carefully analyze unanswerable questions in information-seeking QA dataset (i.e., Natural Questions and TyDi QA) and attempt to identify the remaining headrooms. We conduct both a range of controlled experiments and insensitive human annotations on around 800 examples across across 6 languages.

Annotated data

In human_annotated_data, we provide human annotated data from TyDi QA and Natural Questions.

Dataset language # of annotated questions file name
Natural Questions English 450 NQ.tsv
TyDi QA Bengali 50 TyDi-Bn.tsv
TyDi QA Japanese 100 TyDi-Ja.tsv
TyDi QA Korean 100 TyDi-Bn.tsv
TyDi QA Russian 50 TyDi-Ru.tsv
TyDi QA Telugu 50 TyDi-Te.tsv

Baselines

In this work, we conduct several baseline experiments to identify the remaining headrooms in information-seeking QA. This repository include baselines for question only baseline. See the training and evaluation details in README.md. We thank the authors of Riki Net, Retro-reader, and ETC for providing their models' predictions that are used to analyze those state-of-the-art models behaviors.

Citation and Contact

If you find this codebase is useful or use in your work, please cite our paper.

@inproceedings{
asai2020learning,
title={Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval},
author={Akari Asai and Eunsol Choi},
booktitle={ACL-IJCNLP},
year={2021}
}

Please contact Akari Asai (@AkariAsai, akari[at]cs.washington.edu) for questions and suggestions.

Owner
Akari Asai
PhD student at @uwnlp . NLP & ML.
Akari Asai
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Namish Khanna 40 Oct 11, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022