Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

Overview

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe De Vleeschouwer ( https://github.com/trougnouf/Manypriors )

Forked from PyTorch implementation of "Variational image compression with a scale hyperprior" by Jiaheng Liu ( https://github.com/liujiaheng/compression )

This code is experimental.

Requirements

TODO torchac should be switched to the standalone release on https://github.com/fab-jul/torchac (which was not yet released at the time of writing this code)

Arch

pacaur -S python-tqdm python-pytorch-torchac python-configargparse python-yaml python-ptflops python-colorspacious python-pypng python-pytorch-piqa-git

Ubuntu / Slurm cluster / misc:

TMPDIR=tmp pip3 install --user torch==1.7.0+cu92 torchvision==0.8.1+cu92 -f https://download.pytorch.org/whl/torch_stable.html
TMPDIR=tmp pip3 install --user tqdm matplotlib tensorboardX scipy scikit-image scikit-video ConfigArgParse pyyaml h5py ptflops colorspacious pypng piqa

torchac must be compiled and installed per https://github.com/trougnouf/L3C-PyTorch/tree/master/src/torchac

torchac $ COMPILE_CUDA=auto python3 setup.py build
torchac $ python3 setup.py install --optimize=1 --skip-build

or (untested)

torchac $ pip install .

Once Ubuntu updates PyTorch then tensorboardX won't be required

Dataset gathering

Copy the kodak dataset into datasets/test/kodak

cd ../common
python tools/wikidownloader.py --category "Category:Featured pictures on Wikimedia Commons"
python tools/wikidownloader.py --category "Category:Formerly featured pictures on Wikimedia Commons"
python tools/wikidownloader.py --category "Category:Photographs taken on Ektachrome and Elite Chrome film"
mv "../../datasets/Category:Featured pictures on Wikimedia Commons" ../../datasets/FeaturedPictures
mv "../../datasets/Category:Formerly featured pictures on Wikimedia Commons" ../../datasets/Formerly_featured_pictures_on_Wikimedia_Commons
mv "../../datasets/Category:Photographs taken on Ektachrome and Elite Chrome film" ../../datasets/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film
python tools/verify_images.py ../../datasets/FeaturedPictures/
python tools/verify_images.py ../../datasets/Formerly_featured_pictures_on_Wikimedia_Commons/
python tools/verify_images.py ../../datasets/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film/

# TODO make a list of train/test img automatically s.t. images don't have to be copied over the network

Crop images to 1024*1024. from src/common: (in python)

import os
from libs import libdsops
for ads in ['Formerly_featured_pictures_on_Wikimedia_Commons', 'Photographs_taken_on_Ektachrome_and_Elite_Chrome_film', 'FeaturedPictures']:
    libdsops.split_traintest(ads)
    libdsops.crop_ds_dpath(ads, 1024, root_ds_dpath=os.path.join(libdsops.ROOT_DS_DPATH, 'train'), num_threads=os.cpu_count()//2)

#verify crops
python3 tools/verify_images.py ../../datasets/train/resized/1024/FeaturedPictures/
python3 tools/verify_images.py ../../datasets/train/resized/1024/Formerly_featured_pictures_on_Wikimedia_Commons/
python3 tools/verify_images.py ../../datasets/train/resized/1024/Photographs_taken_on_Ektachrome_and_Elite_Chrome_film/
# use the --save_img flag at the end of verify_images.py commands if training fails after the simple verification

Move a small subset of the training cropped images to a matching test directory and use it as args.val_dpath

JPEG/BPG compression of the Commons Test Images is done with common/tools/bpg_jpeg_compress_commons.py and comp/tools/bpg_jpeg_test_commons.py

Loading

Loading a model: provide all necessary (non-default) parameters s.a. arch, num_distributions, etc. Saved yaml can be used iff the ConfigArgParse patch from https://github.com/trougnouf/ConfigArgParse is applied, otherwise unset values are overwritten with the "None" string.

Training

Train a base model (given arch and num_distributions) for 6M steps at train_lambda=4096, fine-tune for 4M steps with lower train_lambda and/or msssim lossf Set arch to Manypriors for this work, use num_distributions 1 for Balle2017, or set arch to Balle2018PTTFExp for Balle2018 (hyperprior) egrun:

python train.py --num_distributions 64 --arch ManyPriors --train_lambda 4096 --expname mse_4096_manypriors_64_CLI
# and/or
python train.py --config configs/mse_4096_manypriors_64pr.yaml
# and/or
python train.py --config configs/mse_2048_manypriors_64pr.yaml --pretrain mse_4096_manypriors_64pr --reset_lr --reset_global_step # --reset_optimizer
# and/or
python train.py --config configs/mse_4096_hyperprior.yaml

--passthrough_ae is now activated by default. It was not used in the paper, but should result in better rate-distortion. To turn it off, change config/defaults.yaml or use --no_passthrough_ae

Tests

egruns: Test complexity:

python tests.py --complexity --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test timing:

python tests.py --timing "../../datasets/test/Commons_Test_Photographs" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Segment the images in commons_test_dpath by distribution index:

python tests.py --segmentation --commons_test_dpath "../../datasets/test/Commons_Test_Photographs" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Visualize cumulative distribution functions:

python tests.py --plot --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test on kodak images:

python tests.py --encdec_kodak --test_dpath "../../datasets/test/kodak/" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64

Test on commons images (larger, uses CPU):

python tests.py --encdec_commons --test_commons_dpath "../../datasets/test/Commons_Test_Photographs/" --pretrain checkpoints/mse_4096_manypriors_64pr/saved_models/checkpoint.pth --arch ManyPriors --num_distributions 64

Encode an image:

python tests.py --encode "../../datasets/test/Commons_Test_Photographs/Garden_snail_moving_down_the_Vennbahn_in_disputed_territory_(DSCF5879).png" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64 --device -1

Decode that image:

python tests.py --decode "checkpoints/mse_4096_manypriors_64pr/encoded/Garden_snail_moving_down_the_Vennbahn_in_disputed_territory_(DSCF5879).png" --pretrain mse_4096_manypriors_64pr --arch ManyPriors --num_distributions 64 --device -1
Owner
Benoit Brummer
BS CpE at @UCF (2016), MS CS (AI) @uclouvain (2019), PhD student @uclouvain w/ intoPIX
Benoit Brummer
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
A repository for storing njxzc final exam review material

文档地址,请戳我 👈 👈 👈 ☀️ 1.Reason 大三上期末复习软件工程的时候,发现其他高校在GitHub上开源了他们学校的期末试题,我很受触动。期末

GuJiakai 2 Jan 18, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023